Confluence versus Ample Sets in
Probabilistic Branching Time

Henri Hansen Mark Timmer
Department of Software Systems Formal Methods and Tools
Tampere University of Technology Faculty of EEMCS
PO Box 553, FI-33101 Tampere, Finland University of Twente, The Netherlands
henri.hansen@tut.fi timmer@cs.utwente.nl

To improve the efficiency of model checking in general, and probabilistic model checking in par-
ticular, several reduction techniques have been introduced. Two of these, confluence reduction and
partial-order reduction by means of ample sets, are based on similar principles, and both preserve
branching-time properties for probabilistic models. Confluence reduction has been introduced for
probabilistic automata, whereas ample set reduction has been introduced for Markov decision pro-
cesses.

In this presentation we will explore the relationship between confluence and ample sets. To this
end, we redefine confluence reduction to handle MDPs. We show that all non-trivial ample sets
consist of confluent transitions, but that the converse is not true. We also show that the two notions
coincide if the definition of confluence is restricted, and point out the relevant parts where the two
theories differ. The results we present also hold for non-probabilistic models, as our theorems can
just as well be applied in a context where all transitions are non-probabilistic.

To show a practical application of our results, we adapt a state space generation technique based
on representative states, already known in combination with confluence reduction, so that it can also
be applied with partial-order reduction.

1 Introduction

Probabilistic model checking has proved to be an effective way for improving the quality of communi-
cation protocols and encryption techniques, but also for studying biological systems or measuring the
performance of networks. The omnipresent state-space explosion poses a serious threat to the efficiency
of model checking and similar methods, which is why several reduction techniques have been introduced
to deal with large systems.

Recently, two reduction techniques from non-probabilistic model checking were generalised to the
probabilistic setting: partial-order reduction (1, 18 [12]] and confluence reduction [4}|3]. Both make use
of some kind of notion of independence between transitions of a system, and try to reduce the state space
by eliminating redundant paths through the system (and therefore often also states).

Partial-order reduction, in the form of ample sets, was the first notion to be generalised. In [2]
and [5], the concept was lifted from labelled transition systems to Markov decision processes, providing
reductions that preserve quantitative LTL\ x. These techniques were refined in [1] to also preserve prob-
abilistic CTL, a branching logic. Later, a revision of partial-order reduction for distributed schedulers
was introduced and implemented in PRISM [6]].

Recently, also confluence reduction was lifted to the probabilistic realm. In [11}[10] a probabilistic
variant was introduced that, just like the ample set reduction of [1]], preserves branching properties. It
was defined as a reduction technique for action-based probabilistic automata [9], but as we will show in
this presentation, it can also easily be used in the context of Markov decision processes.

© H. Hansen & M. Timmer
This work is licensed under the
Creative Commons Attribution License.

Submitted to:
YR-CONCUR 2011


http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Confluence versus Ample Sets in Probabilistic Branching Time

{r}
o D /®\f @)
PR TR
ey o d Nfa} {9}/

—® B~

(2) (b) (©

Figure 1: Confluence triumphs over ample sets.

Ample sets and confluent transitions are defined and detected quite differently: ample sets are defined
by first giving an independence relation for the action labels, whereas confluence is a property of a set of
(invisible) transitions in the final state space. Even so, the underlying ideas are similar on the intuitive
level: the set of outgoing transitions from a state is reduced in such a way that the observable behaviour
remains identical, by detecting and then giving priority to transitions that are unobservable and do not
influence the potential observable behaviour.

Therefore, an obvious question is: to what extent do confluence and partial-order reduction coincide?
We will address this question by comparing the notion of probabilistic ample sets from [[1] to the notion
of strongly probabilistic confluent sets from [[1 1

2 Results

We showed that probabilistic confluence reduction is strictly more powerful than probabilistic ample set
reduction, by proving that every non-trivial ample set can be mimicked by a confluent set. So, if the
ample set method allows a state to explore only one of its outgoing transitions, the confluence method
also allows this. Therefore, any reduction enabled by the use of ample sets is also enabled by confluence.

However, the converse turns out not to hold. Figure|[T]illustrates three MDPs (with the atomic propo-
sitions per state indicated in brackets, and having only deterministic transitions), where confluent tran-
sitions cannot be chosen as ample sets. Here, we will give an intuitive idea of the definitions of and
differences between confluence and ample sets, based on these figures. Note that actions in MDPs are
unobservable if they are stuttering, i.e., if they do not change the truth values of the atomic propositions.
Also note that we did not even need to include probabilistic transitions for these counter examples.

Example 1. In Figure both transitions are stuttering, since the labellings of s; and sy coincide.
Also, they are both deterministic and reach the same target state, making them satisfy the conditions to
be confluent. After all, giving one of them priority over the other would not change anything about the
observable behaviour of the system. However, the actions a and b are not independent, since they disable
each other. Therefore, the only valid ample set for s is {a,b}, and no reduction can be obtained using
partial-order reduction.

In Figure[I(b)] the action c is stuttering. It is also confluent, since the d-transition can be taken before
and afterwards without influencing the state we end up in. However, {c} is not a valid ample set at 51, as
also in this case ¢ and d and dependent (since d disables c).

Finally, in Figure the ample set of state s; could in principle be {e}, were it not the case that
later on in the system e and f disable each other. Confluence is of a more local nature, and can reduce in
this case. Even if the e-action from s3 to s4 would be named differently, confluence would not care about

I'A full paper containing all the details can be found athttp://wwwhome.cs.utwente.nl/~timmer/research.php,


http://wwwhome.cs.utwente.nl/~timmer/research.php

H. Hansen & M. Timmer 3

this, as opposed to the ample set conditions. They cannot deal with differently named stuttering actions,
as they rely on a dependency relation of the action level.

In all these three cases, confluence reduction would allow transitions (and therefore possibly also
states) to be removed, whereas ample set reduction would not. O

With the above example in mind, we precisely pinpointed in what way confluence is more general
than ample sets, by restricting the definition of confluence to make it coincide with ample sets.

The theory is presented in such a way, that the results hold for non-probabilistic automata as well, as
they form a special case of the theory, when all probability distributions are deterministic.

2.1 Implications

Our findings imply that results and techniques applicable to confluence, can be used in conjunction with
ample sets. As an example, a state space generation technique based on representative states, already
known in the context of confluence reduction [4]], can also be applied with partial-order reduction.

Basically, for this we perceive the system as being partitioned into sets of states that can reach a
common representative through confluent transitions. As each state in such a set S; can, due to conflu-
ence, simulate all other states in S;, we can just take one of them as a representative for that set and omit
the other states. To make sure that all visible transitions are enabled immediately from the representa-
tive (without the need of some confluent transitions first), we need to choose the representative from the
terminal strongly connected component (TSCC) of the sub-MDP restricted by the states of S; and the
confluent transitions. The representative can easily be found using a slightly adapted variant of Tarjan’s
algorithm for strongly connected components, as explained in detail in [4} 3]

The technique makes the cycle condition of ample sets redundant, in addition to further reducing
the number of states and transitions. The latter is important, especially if the MDP is to be subjected to
further analysis.

3 Conclusions and discussion

We redefined probabilistic confluence reduction to an MDP-based setting, enabling a comparison to
probabilistic partial-order reduction based on ample sets. We proved that every non-trivial ample set can
be mimicked by a confluent set, and that in some cases reductions are possible using confluence but not
using ample sets. Therefore, at least in theory confluence reduction is able to reduce more than the ample
set method. We also showed the exact way in which confluence would have to be strengthened for the
two notions to coincide. These results also hold for the non-probabilistic variants of the two reduction
techniques.

Although the additional power of confluence might be difficult to put to use by syntactic heuristics,
our precise comparison of confluence and partial-order reduction at the least fills a gap in our theoretical
understanding of the two notions. Moreover, the results we present support the idea that confluence
reduction is a well-suited alternative to the thus far more often used partial-order reduction method, for
instance in contexts where the heuristics for detecting confluence might be much easier (as seems to be
the case for process-algebraic modelling languages).

Our observation that probabilistic ample set reduction can be mimicked by probabilistic confluence
reduction has additional implications, some of which are highly practical. One such implication is that
the use of representatives for reduced state space generation, already applied earlier in combination with
confluence reduction, can also be applied for partial-order reduction. Furthermore, as a nontrivial result,
the cycle condition can be omitted, when using representatives.



4 Confluence versus Ample Sets in Probabilistic Branching Time

As both ample sets and confluence are detected symbolically on the language level, the quality of the
heuristics applied there will decide which notion works best in practice. The results in this paper already
strengthen our theoretical understanding of the two methods, and this is independent of the heuristics
that are applied. Also, no matter how such heuristics might be improved, the results in this paper will
remain valid.

Even though a case study on probabilistic confluence reduction in [11] seemed to outperform similar
reductions based on ample sets, future work could focus more on the relative merits of the two notions in
practice and potentially on the improvement of the syntactical heuristics, if some “best of both worlds”
approach is found.

3.1 Acknowledgments

This research has been partially funded by NWO under grants 612.063.817 (SYRUP) and Dn 63-257
(ROCKS), by the European Union under FP7-ICT-2007-1 grant 214755 (QUASIMODO), and by the
Finnish Foundation for Technology Promotion. We thank Stefan Blom for his helpful suggestions.

References

[1] C.Baier, P.R. D’ Argenio & M. GroBer (2006): Partial Order Reduction for Probabilistic Branching Time. In:
Proc. of the Third Workshop on Quantitative Aspects of Programming Languages (QAPL), ENTCS 153(2),
pp- 97-116.

[2] C. Baier, M. GroBer & F. Ciesinski (2004): Partial Order Reduction for Probabilistic Systems. In: Proc. of
the Ist Int. Conf. on Quantitative Evaluation of Systems (QEST), IEEE Computer Society, pp. 230-239.

[3] S.C.C.Blom (2001): Partial T-confluence for efficient state space generation. Technical Report SEN-R0123,
CWIL

[4] S.C.C.Blom & J. C. van de Pol (2002): State Space Reduction by Proving Confluence. In: Proc. of the 14th
Int. Conf. on Computer Aided Verification (CAV), LNCS 2404, Springer, pp. 596-609.

[5] P. R. D’Argenio & P. Niebert (2004): Partial Order Reduction on Concurrent Probabilistic Programs. In:
Proc. of the 1st Int. Conf. on Quantitative Evaluation of Systems (QEST), IEEE Computer Society, pp. 240—
249.

[6] S. Giro, P. R. D’ Argenio & L. Maria Ferrer Fioriti (2009): Partial Order Reduction for Probabilistic Systems:
A Revision for Distributed Schedulers. In: Proc. of the 20th Int. Conf. on Concurrency Theory (CONCUR),
LNCS 5710, Springer, pp. 338-353.

[7] P. Godefroid (1996): Partial-order Methods for the Verification of Concurrent Systems: an Approach to the
State-explosion Problem. LNCS 1032, Springer.

[8] D. Peled (1993): All from One, One for All: on Model Checking Using Representatives. In: Proc. of the 5th
Int. Conf. on Computer Aided Verification (CAV), LNCS 697, Springer, pp. 409—423.

[9] R. Segala (1995): Modeling and Verification of Randomized Distributed Real-Time Systems. Ph.D. thesis,
Massachusetts Institute of Technology.

[10] M. Timmer, M. I. A. Stoelinga & J. C. van de Pol (2010): Confluence Reduction for Probabilistic Systems
(extended version). Technical Report 1011.2314, ArXiv e-prints.

[11] M. Timmer, M. L. A. Stoelinga & J. C. van de Pol (2011): Confluence reduction for Probabilistic Systems. In:
Proc. of the 17th Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
LNCS 6605, Springer, pp. 311-325.

[12] A. Valmari (1989): Stubborn sets for reduced state space generation. In: Proc. of the 10th Int. Conf. on
Application and Theory of Petri Nets, LNCS 483, Springer, pp. 491-515.



	Introduction
	Results
	Implications

	Conclusions and discussion
	Acknowledgments


