
Confluence reduction for
probabilistic systems∗

Mark Timmer, Jaco van de Pol, Mariëlle Stoelinga
Formal Methods and Tools, Faculty of EEMCS, University of Twente, The Netherlands

{vdpol, marielle, timmer}@cs.utwente.nl

ABSTRACT. In this presentation we introduce a novel technique for state space reduction of proba-
bilistic specifications, based on a newly developed notion of confluence for probabilistic automata.
We proved that this reduction preserves branching probabilistic bisimulation and can be applied
on-the-fly. To support the technique, we introduce a method for detecting confluent transitions
in the context of a probabilistic process algebra with data, facilitated by an earlier defined linear
format. We present a case study, demonstrating that significant reductions can be obtained.

1 Introduction
Model checking of probabilistic systems is getting more and more attention, but there still
is a large gap between the number of techniques supporting traditional model checking
and those supporting probabilistic model checking. Especially methods aimed at reducing
state spaces are greatly needed to battle the omnipresent state space explosion.

In this work, we generalise the notion of confluence [8] from labelled transition sys-
tems (LTSs) to probabilistic automata (PAs) [9]. Basically, an (invisible) τ-step is confluent
(and then often denoted by τc) if it commutes with all other transitions. As a consequence,
we are able to generalise a reduction technique based on confluence to PAs, preserving
branching probabilistic bisimulation [10]. Our methodology follows the approach for LTSs
from [4]. This approach leads to an on-the-fly (potentially exponential) state space reduc-
tion, and consists of the following steps:

1. specifying a system as a parallel composition of processes with data;
2. transforming the specification to a linear format (linearisation);
3. checking which symbolic τ-transitions are confluent using first-order logic formulas;
4. giving confluent τ-transitions priority during LTS generation.

The next section will give an informal overview of our reduction method. For a complete
explanation, including all the formal definitions and proofs and a case study, see [11].

2 Approach
Intuitively, τ-transitions are confluent if they do not influence the behaviour of a system.
Stated differently, a confluent transition s −τ→ s′ should imply that s is in some way equiv-
alent to s′ (in this work we take branching probabilistic bisimulation). These transitions
therefore pave the way for state space reductions (for instance by giving confluent transi-
tions priority).

∗This research has been partially funded by NWO under grant 612.063.817 (SYRUP) and grant Dn 63-257
(ROCKS), and by the European Union under FP7-ICT-2007-1 grant 214755 (QUASIMODO).



2 CONFLUENCE REDUCTION FOR PROBABILISTIC SYSTEMS

•

•

•

•

•

•

a

τc

τc

ā

τcτc

(a) Weak confluence.

•

•

•

•

•

a

τc

ā

τcτc

(b) Confluence.

•

•

•

•

a

τc

ā

τc

(c) Strong confluence.

Figure 1: Three non-probabilistic variants of confluence.

For (non-probabilistic) labelled transition systems several notions of confluence al-
ready exist, defining when a τ-transition is considered confluent or not [3]. Basically, they
all require that if an action a is enabled from some state s that also enables a confluent
τ-transition, then (1) a will still be enabled after taking that τ-transition (possibly requir-
ing some additional confluent τ-transitions first), and (2) we can always end up in the
same state traversing only confluent τ-steps, no matter whether we started by the a- or
the τ-transition.

The series of probabilistic confluence notions we introduce are inspired by the non-
probabilistic confluence notions from [3]. The most relevant notions for our work are weak
confluence, confluence and strong confluence, depicted in Figure 1. Here, we use an arrow
with label a to denote a step that is optional in case a = τ (i.e., in that case its source
and target states might be the same state). The weaker the confluence notion, the more
reduction potentially can be achieved. However, the weak notions are harder to detect.

For probabilistic systems the situation is more difficult, as transitions are associated
with a probability distribution instead of a single target state. To still enable reductions
based on confluence, only τ-transitions with a (non-probabilistically) fixed target state
might be considered confluent. Figure 2 provides an example to depict the notions of
weak probabilistic confluence and strong probabilistic confluence that we developed. The
basic idea for both is still the same: the target states of the a-transition on the left should
be connected by τc-transitions to the target states of the a-transition on its right. More pre-
cisely, when giving all states that can reach each other via τc-transitions the same colour,
µ and ν should assign the same probability to the set of states having a colour. For strong
probabilistic confluence we require these τc-transitions to be in the same direction as the

s t0 t

s1 s2

µ 1
2

1
2

a

τc τc

t2t1 t3

1
6

1
3

1
2

νa

τc

τc

τc

τc

(a) Weak probabilistic confluence.

s t

s1 s2

µ 1
2

1
2

a

τc

t2t1 t3

1
6

1
3

1
2

νa

τc

τc

τc

τc

(b) Strong probabilistic confluence.

Figure 2: Probabilistic generalisations of weak and strong confluence.



TIMMER, VAN DE POL, STOELINGA YR-CONCUR 2010 3

transition on top, whereas for weak probabilistic confluence we also allow transitions in
the other direction. For strong probabilistic bisimulation, moreover, we require the a-
transition to still be directly enabled after the confluent step.

We established some basic facts about the relations between these probabilistic con-
fluence notions, and proved that (weakly) probabilistically confluent τ-transitions always
connect branching probabilistically bisimilar states. Based on this fact, we propose a con-
fluence reduction for PAs. The reduced automaton is guaranteed to be branching prob-
abilistically bisimilar to the original one, so it preserves virtually all interesting temporal
properties (as expressed in for instance WPCTL). The idea is to give confluent transitions
priority, except on one state of each terminal strongly connected component, to avoid a
problem similar to the “postponing” problem in partial-order reduction for systems con-
taining τ-loops.

To use our methods for probabilistic verification in practice, generating the unreduced
probabilistic automaton should be avoided. Therefore, probabilistic confluence must be
lifted to the level of (symbolic) specifications. Here we exploit our previously established
probabilistic linear format [7]. We have shown then (for a probabilistic process algebra
with data) that a system of parallel components with data can be transformed into a spec-
ification in linear format. In this presentation, we show how the confluence of symbolic
τ-transitions can be expressed as formulas in first-order logic over this format. As a conse-
quence, confluent τ-steps can be detected at the symbolic level. Subsequently, the reduced
PA can be generated on-the-fly.

Related work. Our work has some similarities to partial-order reduction for probabilis-
tic systems. In [2] and [5] partial-order reduction techniques were presented that pre-
serve quantitative LTL\X. This was refined in [1] to probabilistic computation tree logic,
a branching logic. These papers could not yet report on experimental results. Due to our
connection between confluence at the automaton level and the symbolic linear format, we
can now perform actual experiments, and achieve on-the-fly reductions on probabilistic
systems.

Recently, a revision of partial-order reduction for distributed schedulers was intro-
duced and implemented in PRISM [6]. Confluence reduction differs from this approach
on several accounts. First of all, the definition of confluence is very different from the
notion of independence used in POR. Because of this, no language-specific independence
heuristics are needed anymore; the proof obligations to be fed to a theorem prover directly
follow from the formalisms. Moreover, this results in easier definitions and shorter proofs.

3 Conclusions
We developed new notions of confluence for probabilistic automata. Several facts were
established about the relations between these notions, and we proved that they identify
branching probabilistically bisimilar states. Based on this, probabilistic confluence can
be used for state space reduction, even for systems containing τ-loops. We developed a
method for probabilistic confluence to be detected in the context of a probabilistic process
algebra with data by proving formulas in first-order logic. This way, we enable on-the-fly
reductions when generating the state space corresponding to a process-algebraic speci-



4 CONFLUENCE REDUCTION FOR PROBABILISTIC SYSTEMS

fication. A case study on leader election, as described in [11] and to be included in the
presentation, illustrates the power of our method. Here, the number of states and transi-
tions both reduced by approximately a factor of 3.

References
[1] C. Baier, P.R. D’Argenio, and M. Größer. Partial order reduction for probabilistic

branching time. Electronic Notes in Theoretical Computer Science, 153(2):97–116, 2006.
[2] C. Baier, M. Größer, and F. Ciesinski. Partial order reduction for probabilistic systems.

In Proc. of the 1st Int. Conf. on Quantitative Evaluation of Systems (QEST), pages 230–239.
IEEE Computer Society, 2004.

[3] S.C.C. Blom. Partial τ-confluence for efficient state space generation. Technical Re-
port SEN-R0123, CWI, Amsterdam, 2001.

[4] S.C.C. Blom and J.C. van de Pol. State space reduction by proving confluence. In
Proc. of the 14th Int. Conf. on Computer Aided Verification (CAV), volume 2404 of LNCS,
pages 596–609. Springer, 2002.

[5] P.R. D’Argenio and P. Niebert. Partial order reduction on concurrent probabilistic
programs. In Proc. of the 1st Int. Conf. on Quantitative Evaluation of Systems (QEST),
pages 240–249. IEEE Computer Society, 2004.

[6] S. Giro, P.R. D’Argenio, and L. Marı́a Ferrer Fioriti. Partial order reduction for proba-
bilistic systems: A revision for distributed schedulers. In Proc. of the 20th Int. Conf. on
Concurrency Theory (CONCUR), volume 5710 of LNCS, pages 338–353. Springer, 2009.

[7] J.-P. Katoen, J.C. van de Pol, M.I.A. Stoelinga, and M. Timmer. A linear process-
algebraic format for probabilistic systems with data. In Proc. of the 10th Int. Conf. on
Application of Concurrency to System Design (ACSD), LNCS. Springer, To appear. 2010.

[8] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[9] R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems. PhD

thesis, Massachusetts Institute of Technology, 1995.
[10] R. Segala and N.A. Lynch. Probabilistic simulations for probabilistic processes. Nordic

Journal of Computation, 2(2):250–273, 1995.
[11] M. Timmer, J.C. van de Pol, and M.I.A. Stoelinga. Confluence reduction for prob-

abilistic systems. Technical report, University of Twente, 2010. Available at
http://wwwhome.cs.utwente.nl/˜timmer/papers/YRCONCUR.pdf.


