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The context: probablllstlc model checking

Probabilistic model checking:
o Verifying quantitative properties,

e Using a probabilistic model (e.g., a probabilistic automaton)
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The context: probabilistic modél cheéking

Probabilistic model checking:
o Verifying quantitative properties,

e Using a probabilistic model (e.g., a probabilistic automaton)
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@ Non-deterministically choose one of the three transitions
@ Probabilistically choose the next state
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The context: probabilistic model checking

Probabilistic model checking:
o Verifying quantitative properties,

e Using a probabilistic model (e.g., a probabilistic automaton)

@ Non-deterministically choose one of the three transitions
@ Probabilistically choose the next state
Limitations of previous approaches:
@ Susceptible to the state space explosion problem
@ Restricted treatment of data
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Combating the state space explosion

Specification

Instantiation

State space

Minimisation (optimisation)

State space
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Combating the state space explosion

Specification

Instantiation

Optimised instantiation

- Dead variable reduction

- Confluence reduction
State space

Minimisation (optimisation)

State space
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Overview of our approach
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Overview of our approach
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Strong bisimulation for Probabilistic Au

Mimic behaviour with equal probabilities:
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A process algebra W|th data and probability: prCRL

Specification language prCRL:
@ Based on uCRL (so data), with additional probabilistic choice
@ Semantics defined in terms of probabilistic automata
@ Minimal set of operators to facilitate formal manipulation

@ Syntactic sugar easily definable

UNIVERSITY OF TWENTE. Efficient Modelling and Generation of Probabilistic Automata as \ June 29, 2012



A process algebra wit data and probability: pr

Specification language prCRL:

Based on pCRL (so data), with additional probabilistic choice
Semantics defined in terms of probabilistic automata

Minimal set of operators to facilitate formal manipulation

Syntactic sugar easily definable

The grammar of prCRL process terms

Process terms in prCRL are obtained by the following grammar:

pu=Y®) | c=p | ptp | D p| at) f:p
x:D

x:D

Process equations and processes

A process equation is something of the form X(g : G) = p.
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An example specification

Sending an arbitrary natural number

X(active : Bool) =
not(active) = ping - Z X(b)
b:Bool
+ active =7 Z o (send(n) : X(false))

n:N>0
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An example specification

Sending an arbitrary natural number

X(active : Bool) =
not(active) = ping - Z X(b)
b:Bool
+ active =7 Z o (send(n) : X(false))

n:N>0

send(1)

send(1) - X(false)

send(2) - X(false)

send(2)
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Composability using extended prCRL

For composability we introduce extended prCRL. It extends prCRL
by parallel composition, encapsulation, hiding and renaming.
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Composablllty using extended prCRL

For composability we introduce extended prCRL. It extends prCRL
by parallel composition, encapsulation, hiding and renaming.

X(n:{1,2}) = writex(n) - X(n) + choose Z %: X(n")
n':{1,2}

Y(m: {1,2}) = writey(m) - Y(m) + choose’ Z
m’:{1,2}
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X(n:{1,2}) = writex(n) - X(n) + choose Z %: X(n")
n':{1,2}

Y(m: {1,2}) = writey(m) - Y(m) + choose’ Z
m’:{1,2}

Z= (X@W) 1Y (2)
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For composability we introduce extended prCRL. It extends prCRL
by parallel composition, encapsulation, hiding and renaming.

X(n:{1,2}) = writex(n) - X(n) + choose Z %: X(n")

n':{1,2}
Y(m: {1,2}) = writey(m) - Y(m) + choose’ Z
m’:{1,2}
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by parallel composition, encapsulation, hiding and renaming.
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Composablllty using extended prCRL

For composability we introduce extended prCRL. It extends prCRL
by parallel composition, encapsulation, hiding and renaming.

X(n:{1,2}) = writex(n) - X(n) + choose Z
n’:{1, 2}

Y(m: {1,2}) = writey(m) - Y(m) + choose’ Z
m’:{1,2}

Z = a{chocse,chocse’}()<(]') H Y(2))
7(choose, choose’) = chooseTogether

writex (1) c@:) writey (2)
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Composablllty using extended prCRL

For composability we introduce extended prCRL. It extends prCRL
by parallel composition, encapsulation, hiding and renaming.

X(n:{1,2}) = writex(n) - X(n) + choose Z
n’:{1, 2}

Y(m: {1,2}) = writey(m) - Y(m) + choose’ Z
m’:{1,2}

Z = a{chocse,chocse’}()<(]') H Y(2))
7(choose, choose’) = chooseTogether

writex (1) .e. writey (2)
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inear forrﬁat fof”prCRL the LPPE

LPPEs are a subset of prCRL specifications:

= Z Clial(bl)z f1:X’n1

dy:D, e, E,

+ Z ijak(bk)z fk:Xn

dp:Dy, er:Ey
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A I|near format for prCRL: the LPPE

LPPEs are a subset of prCRL specifications:

G): Z Clial(bl)z f1:X’n1

dy:D, e, E,

+ Z ijak(bk)z fk:Xn

dkka ek:Ek

Advantages of using LPPEs instead of prCRL specifications:
o Easy state space generation
@ Straight-forward parallel composition
e Symbolic optimisations enabled at the language level
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inear format for prCRL the LPPE

LPPEs are a subset of prCRL specifications:

= Z Clial(bl)z f1:X’n1

d,:D, e, E,

+ Z ijak(bk)z fk:Xn

dkka ek:Ek

Advantages of using LPPEs instead of prCRL specifications:
o Easy state space generation
@ Straight-forward parallel composition
e Symbolic optimisations enabled at the language level

Every specification (without unguarded recursion) can be linearised
to an LPPE, preserving strong probabilistic bisimulation.
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send(1) - X(false)

send(2) - X(false)

send(2)
N J

Specification in prCRL

X (active : Bool) =
not(active) = ping - Z X(b)
b:Bool

+ active = TZ 5q - send(n) - X(false)

n:N>0
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MAPA  Encc

send(1) - X(false)

send(2) - X(false)

send(2)
~ J
Specification in prCRL Specification in LPPE
X(active : Bool) = X(pc: {1.3},n: N=%) =
not(active) = ping - Z X(b) + pc= 1= ping- X(2, 1)
b:Bool + pc= 2= ping - X(2,1)
+ active = TZ 5q - send(n) - X(false) tpc=2= TZ 1 X(3,n)

mN=0 n:N>0

+ pc = 3= send(n) - X(1, I)
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Introduction prCRL  Linearisation Reductions MAPA Encc

Linearisation: a simple example W|thout data

Consider the following prCRL specification:

X=a-b-c-X
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prCRL  Linearisation Redu

Linearisation: a simple example without data

Consider the following prCRL specification:
X=a-b-c- X

The control flow of X is given by:

UNIVERSITY OF TWENTE. Efficient Modelling and Generation of Probabilistic Automata as \ June 29, 2012 12 / 37



prCRL  Linearisation Redu

Linearisation: a simple example without data

Consider the following prCRL specification:
X=a-b-c- X

The control flow of X is given by:

UNIVERSITY OF TWENTE. Efficient Modelling and Generation of Probabilistic Automata as \ June 29, 2012 12 / 37



n prCRL Linearisation Reductions

Linearisation: a simple example with

Consider the following prCRL specification:
X=a-b-c- X

The control flow of X is given by:
( : < a b7 : )
(o

The corresponding LPPE (initialised with pc = 1):

Y(pc: {1,2,3}) =
pc=1=a-Y(2)
+pc=2=b-Y(3)
+pc=3=c-Y(1)
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on prCRL Linearisation

Lmearlsatlon a more compllcated example W|th data

Consider the following prCRL specification:

X = det(d)-(T-Ioss~X+T-send(d)-X)
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on prCRL Linearisation

Lmearlsatlon a more compllcated example W|th data

Consider the following prCRL specification:

X =

Control flow:

loss

get

send
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Consider the following prCRL specification:

X = det(d)-(T-Ioss~X+T-send(d)-X)

Control flow: LPPE:
( 7
Y(pc: {1,2,3,4},x: D) =
> 4gp Pc=1=get(d)- Y(2,d)
Bt + pc=2=171-Y(3,x)
loss send + pc=2=71-Y(4x)
+ pc =3 = loss- Y(1,x)
/T T + pc =4 = send(x) - Y(1,x)
= J
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Consider the following prCRL specification:

X =

Control flow:

det(d) - (7 - loss - X + 7 - send(d) - X)

LPPE:

) Y(pc: {1,2,3,4},x: D) =
> 4gp Pc=1=get(d)- Y(2,d)
B + pc=2=171-Y(3,x)
loss send + pc=2=171-Y(4x)
+ pc =3 = loss- Y(1,x)
/T T + pc =4 = send(x) - Y(1,x)
) Initial process: Y'(1,d1).
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Intro prCRL Linearisation R

Linearisation: a more algorithmic approac

Consider the following prCRL specification:

X(d:D)=>"a(d+e) > & (c(e) () X(5) + c(e + f) X(s))

e:D f:D
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Introduction prCRL Linearisation Reductions MAPA Er

Linearisation: a more algorithmic approach

Consider the following prCRL specification:

X(d:D)=>"a(d+e) > & (c(e) () X(5) + c(e + f) X(s))
f:D

e:D

1 Xi(d:D,e:D,f:D)=
Yepald+e)¥yp e (cle) - c(f) X(5) +cle+f)- X(5))
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Linearisation: a more algorithmic approach

Consider the following prCRL specification:

X(d:D)=>"a(d+e) > & (c(e) () X(5) + c(e + f) X(s))
f:D

e:D

1 Xi(d:D,e:D,f:D)=
Yepald +e)Xpp i (c(e)-c(f)- X(5) + cle +f) - X(5))

2 Xui(d:D,e:D.f:D)=3.pa(d+e)¥rp 5 Xeld, e f)
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Linearisation: a more algorithmic approach

Consider the following prCRL specification:
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f:D
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1 Xi(d:D,e:D,f:D)=
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Linearisation: a more algorithmic approa

Consider the following prCRL specification:

X(d:D)=>"a(d+e) > & (c(e) () X(5) + c(e + f) X(s))
f:D

e:D

1 Xi(d:D,e:D,f:D)=
Yepald+e)¥yp e (cle)- C(f)'X(5) +cle+f)-X(5))

2 Xy(d:D,e:D,f:D)=3,pa(
Xo(d:D,e:D,f: D):c()-c(f)-X(5)+c(e+f)~X(5)
(

3 Xi(d:D,e:D,f:D)=3_pald+e)¥;pis: Xo(d, e, f)
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Linearisation: a more algorithmic approa

Consider the following prCRL specification:

X(d:D)=>"a(d+e) > & (c(e) () X(5) + c(e + f) X(s))
f:D

e:D

1 Xi(d:D,e:D,f:D)=
Yepald+e)¥yp e (cle) - c(f) X(5) +cle+f)- X(5))

2 Xui(d:D,e:D.f:D)=3.pa(d+e)¥rp 5 Xeld, e f)
Xo(d:D,e:D,f:D)=c(e) c(f) X(5)+c(e+f)-X(5)

3 Xi(d:D,e:D,f:D)=3,pa
Xo(d:D,e:D,f:D)=c(e) X3(d,e, )+

0]
o
)
Q.
+
@
N—r
Y
a O
0 9"—‘
)
—
Q
o
-
SN—r
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Consider the following prCRL specification:

X(d:D)=>"a(d+e) > & (c(e) () X(5) + c(e + f) X(s))

( : (
Xo(d:D,e:D,f:D)=c(e) c(f) - X(5)+ c(e+f)-X(5)
3 Xu(d:D,e:D.f:D)=3.pa(d+e)¥rp 5 Xeld, e f)
Xo(d:D,e:D,f:D)=c(e) X3(d,e,f)+c(e+f)- Xi(5,e,f)
Xs(d:D,e:D,f:D)=c(f) X(5)
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Consider the following prCRL specification:

X(d:D)=>"a(d+e) > & (c(e) () X(5) + c(e + f) X(s))

2 Xi(d:D,e:D,f:D) =Y pa(d+e)¥rp i Xa(de,f)
Xo(d:D,e:D,f:D)=c(e) c(f) X(5)+c(e+f)-X(5)

3 Xu(d:D,e:D.f:D)=3.pa(d+e)¥rp 5 Xeld, e f)
Xo(d:D,e:D,f:D)=c(e) X3(d,e,f)+c(e+f)- Xi(5,e,f)
Xs(d: D,e:D,f: D)= c(f) X(5)

4 Xi(d:D,e:D,f:D)= e:Da(d—l—e)zf:DTl)‘-Xg(d,e,f)
Xo(d:D,e:D,f:D)=c(e)  Xz(d,e, f)+ c(e+f)- Xi(5,e,f)
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Consider the following prCRL specification:
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Linearisation: a more algorithmic approa

Consider the following prCRL specification:

X(d:D)=>"a(d+e) > & (c(e) () X(5) + c(e + f) X(s))
e:D f:D
4 Xi(d:D,e:D,f:D)=3.pa(d+e)¥rp 5 Xeld, e f)
Xo(d:D,e:D,f:D)=c(e)  Xsz(d,e, f)+ c(e+ f)- Xi(5,e,f)
X3(d:D,e:D,f:D)=c(f)  Xi(5,e,f)
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Introduction prCRL Linearisation Reductions MAPA Enc

Consider the following prCRL specification:

X(d:D)=>"a(d+e) > & (c(e) () X(5) + c(e + f) X(s))
f:D

e:D

o
B
Y
S
o
O
\H
S
Il
M

: . (d—i—e)EfDTl)‘-Xg(d,e,f)
Xo(d:D,e:D,f:D)=c(e ) Xs(d,e,f)+c(e+f)- Xi(5,e,f)
X3(d:D,e:D,f:D)=c(f)  Xi(5,e,f)

+pc=2=c(e)  X(3,d,e,f)
+pc=2=c(e+f)-X(1,5,e,f)
+pc=3=c(f)- X(1,5,e,f)
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Linearisation

In general, we always linearise in two steps:
@ Transform the specification to intermediate regular form (IRF)
(every process is a summation of single-action terms)

© Merge all processes into one big process by introducing a
program counter

In the first step, global parameters are introduced to remember the
values of bound variables.
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Reductions techniques for LPPEs

@ LPPE simplification
techniques
e Constant elimination
e Summation elimination
e Expression simplification
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Reductions techniques for LPPEs

@ LPPE simplification @ State space reduction
techniques techniques
o Constant elimination o Dead variable reduction
e Summation elimination o Confluence reduction

e Expression simplification
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Reductions techniques for LPPEs

@ LPPE simplification @ State space reduction
techniques techniques
o Constant elimination o Dead variable reduction
e Summation elimination o Confluence reduction

e Expression simplification

X(id : Id) = print(id) - X(id) X = print(Mark) - X

init X(Mark) init X
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Introduction prCRL Linea ion Reductions MAPA Encc

Reductions techniques for LPPEs

@ LPPE simplification @ State space reduction
techniques techniques
o Constant elimination o Dead variable reduction
e Summation elimination e Confluence reduction

e Expression simplification

X = Zd:{l_zj} d =2 = send(d) - X X =send(2) - X

init X init X
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Reductions techniques for LPPEs

@ LPPE simplification @ State space reduction
techniques techniques
o Constant elimination o Dead variable reduction
e Summation elimination o Confluence reduction

e Expression simplification

X=B83=1+2Vx>5)=beep-Y X =beep-Y
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Reductions techniques for LPPEs

@ LPPE simplification @ State space reduction
techniques techniques
e Dead variable reduction

o Constant elimination
o Confluence reduction

e Summation elimination
e Expression simplification

@ Deduce the control flow of an LPPE
@ Examine relevance (liveness) of variables

@ Reset dead variables

June 29, 2012
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Reductions techniques for LPPEs

@ LPPE simplification @ State space reduction
techniques techniques
e Constant elimination e Dead variable reduction

e Summation elimination o Confluence reduction
e Expression simplification

@ Detect confluent internal transitions

@ Give these transitions priority

June 29, 2012

Efficient Modelling and Generation of Probabilistic Automata as \
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Intermediate summary

What you heard so far

@ We developed the process algebra prCRL, incorporating both
data and probability;

@ We defined a normal form for prCRL, the LPPE; starting point
for symbolic optimisations and easy state space generation;

@ We provided a linearisation algorithm to transform prCRL
specifications to LPPEs, proved it correct and implemented it;

@ We developed several reduction techniques for LPPEs that
preserve strong/branching probabilistic bisimulation.
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Contents

© Modelling Markov Automata using MAPA
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The overaII goal efﬁaent and expressive modelllng

Specifying systems with
@ Nondeterminism <«—— | TSs
@ Probability «— DTMCs

@ Stochastic timing<+——— CTMCs
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The overaII goal efﬁaent and expressive modelllng

Specifying systems with
o Nondeterminism +——
o Probability Interactive Markov Chains (IMCs)

@ Stochastic timing «——
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Specifying systems with
o Nondeterminism <«———

e Probability <~—— Markov Automata (MAs)

@ Stochastic timing «——
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ud Conclusions

The overall goal: efficient and expressive modellin

Specifying systems with

@ Nondeterminism <«——
@ Probability

@ Stochastic timing «——

—]

Markov Automata (MAs)

-~

A1
—| Station 1

(error with prob. p) p:N

. X2
Station 2 |+—

/p’OII (error with prob. p)

Server

l/,

June 29, 2012

20 / 37
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The overall goal: efficient and expressive modelling
Specifying systems with
o Nondeterminism <«———

e Probability <~—— Markov Automata (MAs)

@ Stochastic timing «——

Observed limitations:
@ No easy process-algebraic modelling language with data

@ Susceptible to the state space explosion problem
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Approach: extending and reusing

PA — MA
prCRL — MAPA  (Markov Automata Process Algebra)
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Approach extending and reusing

PA — MA
prCRL — MAPA  (Markov Automata Process Algebra)
LPPE — MLPPE (Markovian LPPE)
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Approach: extending and reusing

PA — MA
prCRL — MAPA  (Markov Automata Process Algebra)
LPPE — MLPPE (Markovian LPPE)

MAPA encode .

1
~ : linearise
1
decod
reduce ( | MLPPE ||= croce mgreduce
instantiate
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Strong bisimulation for Markov automata

Mimic interactive behaviour:
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Mimic interactive behaviour:

Mimic Markovian behaviour:
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Introduction prCRL Linea ion Reductions MAPA Encoding a

Strong bisimulation for Markov automata

Mimic interactive behaviour:

Mimic Markovian behaviour:

© O @

(If a state enables a 7-transition,
all rates are ignored.)
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prCRL Linez

A process algebra with data for MAs: MAPA

Specification language MAPA:
@ Based on prCRL: data and probabilistic choice
@ Additional feature: Markovian rates
@ Semantics defined in terms of Markov automata
@ Minimal set of operators to facilitate formal manipulation

@ Syntactic sugar easily definable

UNIVERSITY OF TWENTE. Efficient Modelling and Generation of Probabilistic Automata as \ June 29, 2012



Specification language MAPA:

@ Based on prCRL: data and probabilistic choice

@ Additional feature: Markovian rates

@ Semantics defined in terms of Markov automata

@ Minimal set of operators to facilitate formal manipulation

@ Syntactic sugar easily definable

The grammar of MAPA

Process terms in MAPA are obtained by the following grammar:

pi=Y(Et) | c=p | ptp| D p | at) fip]
x:D

x:D
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An example specification
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An example specification

[ —

poll

Station 2

poll
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An example specification

. @ There are 10 types of jobs

[ —

Station 2

poll

@ The type of job that arrives is

poll .. .
chosen nondeterministically

@ Service time depends on job
type (hence, we need queues)
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An example specification

. @ There are 10 types of jobs

poll

@ The type of job that arrives is

poll .. .
chosen nondeterministically

@ Service time depends on job
type (hence, we need queues)

The specification of the stations:

type Jobs = {1,...,10}

Station(i : {1,2}, q : Queue)
=notFull(q) = (2i). >, ), arrive(j).Station(i, enqueue(q, j))
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An example specification

. @ There are 10 types of jobs

poll

@ The type of job that arrives is

poll .. .
chosen nondeterministically

@ Service time depends on job
type (hence, we need queues)

The specification of the stations:

type Jobs = {1,...,10}
Station(i : {1,2}, q : Queue)
=notFull(q) = (2i). >, ), arrive(j).Station(i, enqueue(q, j))

+ notEmpty(q) = deliver(i, head(q)) Z & . k =1 = Station(i, q)
ke{19} 4 k = 9 = Station(i, tail(q))
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An example specification

. @ There are 10 types of jobs

poll

@ The type of job that arrives is

poll .. .
chosen nondeterministically

@ Service time depends on job
type (hence, we need queues)

The specification of the stations:

type Jobs = {1,...,10}
Station(i : {1,2}, q : Queue)
=notFull(q) = (2i). >, ), arrive(j).Station(i, enqueue(q, j))
+ notEmpty(q) = deliver(i,head(q))(55 : Station(i, q) ® =5 : Station(i, tail(q))
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Derivation-based operational semantics

— p = p
MARKOVPREFIX —————— SUMLEFT ———5——
A)p — p p+q — p
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X=(3)-(5)-(2)-X
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Derivation-based operational semantics

— p = p
MARKOVPREFIX —————— SUMLEFT ———5——
A)p — p p+q — p

X=(3)-(5)-(2)-X

2
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Derivation-based operatlonal semantics

- p = p
MARKOVPREFIX ———— SUMLEFT S —]
A)p — p p+q — p
X=3)-(5)-(2)-X X=03)-(5)-X+c-X
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Derlvatlon based operational semantics

- p = p
MARKOVPREFIX ———— SUMLEFT S —]
A)p — p p+q — p
X=3)-(5)-(2)-X X=03)-(5)-X+c-X
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Derivation-based operational semantics

MARKOVPREFIX ~——— SUMLEFT ————
AN-p = p p+qg = p
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MARKOVPREFIX ~——— SUMLEFT ————
AN-p = p p+qg = p

X=(3)-(5)-X+(3)-(5)-X
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MARKOVPREFIX

X=(3)-(5)-X+(3)-(5)-X

This is not right!
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Derlvatlon based operational semantics

MARKOVPREFIX ~——— SUMLEFT ————
AN-p = p p+qg = p

X=(3)-(5)-X+(3)-(5)-X

This is not right!

As a solution, we look at derivations:
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Derlvatlon based operational semantics

— p 2p P
MARKOVPREFIX X SUMLEFT = 7
AP ——wmp P P+q —siip P

X=(3)-(5)-X+(3)-(5)-X

This is not right!

As a solution, we look at derivations:
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MARKOVPREFIX

a /
—
SUMLEFT 2 D¢

P ——MP P p+q siip P

X=(3)-(5)-X+(3)-(5)-X

O e G

This is not right!

As a solution, we look at derivations:

X == s1.mpy (5) - X

X L>(SR,MP> (5)- X

Hence, the total rate from X to
(5)- X is3+3=6.
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This is not right!

As a solution, we look at derivations:

X == s1.mpy (5) - X

X L>(SR,MP> (5)- X

Hence, the total rate from X to
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MLPPEs

We defined a special format for MAPA, the MLPPE:

X(g:G)=>_ > c=alb)» fi:X(n)
e;:E;

icl d;:D;

+ Z D> g = (V) X(ny)
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Intre

on prCRL Linea

MLPPEs

We defined a special format for MAPA, the MLPPE:

X(g:G)=>_ > c=alb)» fi:X(n)
e FE;

i€l d;:D;

+ Z D> g = (V) X(ny)

Advantages of using MLPPEs instead of MAPA specifications:
@ Easy state space generation
@ Straight-forward parallel composition

e Symbolic optimisations enabled at the language level
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Encoding into prCRL

linearise
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Encoding into prCRL

MAPA encode

linearise
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Encoding into prCRL

encode

1
:3: linearise
1
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Encoding into prCRL

encode

linearise

reduce (| MLPPE |+ decode - LrPE B

reduce
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Encoding into prCRL

linearise

reduce (| MLPPE |+ decode - LrPE B

Basic idea: encode a rate A as action rate(\).

reduce
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Encoding into prCRL

linearise

reduce (| MLPPE |+ decode - LrPE B

Basic idea: encode a rate A as action rate(\).

reduce

Problem:

Bisimulation-preserving reductions on prCRL might change
MAPA behaviour
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Encoding into pr

linearise

1
reduce (| MLPPE |+ decode - LrPE B

Basic idea: encode a rate A as action rate(\).

reduce

Problem:

Bisimulation-preserving reductions on prCRL might change
MAPA behaviour

(A)-p+(A)-p
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Encoding into prCRL

MAPA encode

1
~ 1
~

1

linearise

1
reduce (| MLPPE |+ decode - LrPE B

Basic idea: encode a rate A as action rate(\).

reduce

Problem:

Bisimulation-preserving reductions on prCRL might change
MAPA behaviour

(AN -p+(N\)-p = rate(\)-p+rate(N)-p
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linearise

reduce (| MLPPE |+ decode - LrPE B

reduce

Basic idea: encode a rate A as action rate(\).

Problem:

Bisimulation-preserving reductions on prCRL might change
MAPA behaviour

(AN -p+(N\)-p = rate(\)-p+rate(N)-p

rate(\) - p

UNIVERSITY OF TWENTE.

Efficient Modelling and Generation of Probabilistic Automata as \
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Encodlng into prCRL

encode

| MAPA I
1
~ linearise
1
reduce (| MLPPE |+ decode - LrPE B

Basic idea: encode a rate A as action rate(\).

reduce

Problem:

Bisimulation-preserving reductions on prCRL might change
MAPA behaviour

(AN -p+(N\)-p = rate(\)-p+rate(N)-p

(A)-p < rate(A)-p
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Encodlng into prCRL

encode

| MAPA I
1
~ linearise
1
reduce (| MLPPE |+ decode - LrPE B

Basic idea: encode a rate A as action rate(\).

reduce

Problem:
Bisimulation-preserving reductions on prCRL might change
MAPA behaviour
(AN -p+(N\)-p = rate(\)-p+rate(N)-p
#MA ~PA
(A)-p < rate(A)-p
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Encoding into prCRL

linearise

reduce (| MLPPE |+ decode - LeE B

Possible solution: encode a rate A as action rate;(\).

reduce
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Encoding into prCRL

linearise

reduce (| MLPPE |+ decode - LeE B

Possible solution: encode a rate A as action rate;(\).

reduce

Problem:
This still doesn’t work. . .
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Encoding into prCRL

linearise

reduce (| MLPPE |+ decode - LeE B

Possible solution: encode a rate A as action rate;(\).

reduce

Problem:
This still doesn’t work. . .

(A)-p+(A)-p
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Encoding into prCRL

MAPA encode

1
~ 1
~

1

linearise

1
reduce (| MLPPE |+ decode - LeE B

Possible solution: encode a rate A as action rate;(\).

reduce

Problem:
This still doesn’t work. . .

(AN -p+(N\):-p = rater(N\) - p+ratea(N) - p
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linearise

reduce (| MLPPE |+ decode - LeE B

Possible solution: encode a rate A as action rate;(\).

reduce

Problem:
This still doesn’t work. . .

(AN -p+(N\):-p = rater(N\) - p+ratea(N) - p
~PA
rate;(A) - p + ratex(A) - p + ratea(A) - p
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Possible solution: encode a rate A as action rate;(\).

reduce

Problem:
This still doesn’t work. . .

(AN -p+(N\):-p = rater(N\) - p+ratea(N) - p
~PA
(AN)-p+(N)-p+(N):-p < rater(N) - p+ ratea(N) - p+ratexa(A) - p
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reduce (| MLPPE |+ decode - LeE B

Possible solution: encode a rate A as action rate;(\).

reduce

Problem:
This still doesn’t work. . .

(AN -p+(N\):-p = rater(N\) - p+ratea(N) - p
F#MA ~PA
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linearise

reduce (| MLPPE |+ decode - LeE B

Possible solution: encode a rate A as action rate;(\).

reduce

Problem:
This still doesn’t work. . .

(AN -p+(N\):-p = rater(N\) - p+ratea(N) - p
F#MA ~PA
(AN)-p+(N)-p+(N):-p < rater(N) - p+ ratea(N) - p+ratexa(A) - p

Stronger equivalence on prCRL specifications needed!
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Derivation-preserving bisimulation

Two prCRL terms are derivation-preserving bisimulation if

@ There is a strong bisimulation relation R containing them

UNIVERSITY OF TWENTE. Efficient Modelling and Generation of Probabilistic Automata as \ , 2012 30/ 37



Introduction prCRL Linea ion Reductions MAPA Encoding and decoding Rec

Derivation-preserving bisimulation

Two prCRL terms are derivation-preserving bisimulation if
@ There is a strong bisimulation relation R containing them

@ Every bisimilar pair (p, p’) has the same number of rate(\)
derivations to every equivalence class [r]g.
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Derivation-preserving bisimulation

Two prCRL terms are derivation-preserving bisimulation if
@ There is a strong bisimulation relation R containing them
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Proposition

Derivation-preserving bisimulation is a congruence for prCRL.
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Derlvatlon preserving bisimulation: important results

Given a derivation-preserving prCRL transformation f,
decode(f(encode(M))) ~ M

for every MAPA specification M.
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Generalising existing reduction techniques

Existing reduction techniques that preserve derivations:
@ Constant elimination
@ Expression simplification

@ Dead variable reduction
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Generalising existing reduction techniques

Existing reduction techniques that preserve derivations:
@ Constant elimination
@ Expression simplification

@ Dead variable reduction

| deadVarRed = decode o deadVarRedOld o encode |
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Novel reduction techniques

New reduction techniques for MAPA:
@ Maximal progress reduction

@ Summation elimination
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Novel reduction techniques

New reduction techniques for MAPA:
@ Maximal progress reduction

@ Summation elimination

X=7-X+(5)-X — X

7-X
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Novel reduction techniques

New reduction techniques for MAPA:
@ Maximal progress reduction

@ Summation elimination

X =2 41,23 d=2= send(d) - X X = send(2) - X

V= Zd-{l,2,3}(5) > Y/ Y=(15)-Y

, 2012
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Implementation and Case Study

Implementation in SCOOP:

@ Programmed in Haskell
@ Stand-alone and web-based interface
@ Linearisation, optimisation, state space generation
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78 %

Specification:
X =tau.X[] ++ <5>.X[]

init X

Constants (name = value):

OprCRL mode
OShow LPPE (Ouse prCRL syntax

OTranslate specification to PRISM




will EMT <

20:34 78 % (=P

will EMT =

20:34 78 % =P

Specification:
X =tau.X[] ++ <5>.X[]

init X

Constants (name = value):

OprCRL mode
OShow LPPE (Ouse prCRL syntax

OTranslate specification to PRISM

formula)

7

OlInterpret model as DTMC (prod

OShow statespace as a PRISM tr,

OApply confluence reduction (Os

transitions, Ouse stronger heuris

OMAPA mode
@Show MLPPE (QOuse MAPA synta

ODo not apply the maximal prog

@Apply maximal progress reducti

OShow statespace in AUT format (O
OShow statespace as the actual stat

OShow the number of states and tra

OShow verbose output

d [ Y -~

5|

d [ Y -

5 |



uill EMT < 20:35 78 %

OApply dead variable reduction
OApply transition merging

OSuppress all basic (M)LPPE reductio

Powered by puptol




20:35 78 % (=P

will EMT 2

20:35 78 % =P

OApply dead variable reduction
OApply transition merging
OSuppress all basic (M)LPPE reductio

( Show Result ) ( Visualize Statespace (from AUT) as image ) ( Visualize St:

[(selecl model or experiment) n

(T => tau . X[])

Initial state: X

Powered by puptol

OApply unused variable reduction
OApply dead variable reduction
OApply transition merging
OSuppress all basic (M)LPPE reductio
(Show Resut) (_Visualize Statespace (iram AUT) as image ) (_Visualize S

[(select model or experiment) n

Powered by puptol
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Implementation and Case Study

Implementation in SCOOP:
@ Programmed in Haskell
@ Stand-alone and web-based interface
@ Linearisation, optimisation, state space generation

Original Reduced
Spec. States Trans. MLPPE Time States Trans. MLPPE Time Red.
queue-3-5 316,058 581,892 15 /335 87.4 218,714 484,548 8 /224 20.7 76%
queue-3-6 1,005,699 1,874,138 15/ 335 3233 670,294 1,538,733 8 /224 64.7 80%
queue-3-6’ 1,005,699 1,874,138 15/ 335 319.5 74 108 5 /170 0.0 100%
queue-5-2 27,659 47,130 15 /335 4.3 23,690 43,161 8 /224 1.9 56%
queue-5-3 1,191,738 2,116,304 15/ 335 235.8 926,746 1,851,312 8 /224 84.2 64%
queue-5-3’ 1,191,738 2,116,304 15/ 335 233.2 170 256 5 /170 0.0 100%
queue-25-1 3,330 5,256 15/ 335 0.5 3,330 5,256 8 /224 0.4 20%
queue-100-1 50,805 81,006 15/ 335 8.9 50,805 81,006 8 /224 6.6 26%
mutex-3-2 17,352 40,200 27 / 3,540 12.3 10,560 25,392 12 /2,190 4.6 63%
mutex-3-4 129,112 320,136 27 / 3,540 95.8 70,744 169,128 12 /2,190 30.3 68%
mutex-3-6 425,528 1,137,048 27 / 3,540 330.8 224,000 534,624 12 /2,190 99.0 70%
mutex-4-1 27,701 80,516 36 /5,872 33.0 20,025 62,876 16 / 3,632 135 59%
mutex-4-2 360,768 1,035,584 36 /5,872 435.9 218,624 671,328 16 /3,632 1455 67%
mutex-4-3 1,711,141 5,015,692 36 / 5,872 2,108.0 958,921 2,923,300 16 / 3,632 644.3 69%
mutex-5-1 294,882 1,051,775 45 /8,780 549.7 218,717 841,750 20 /5,430 216.6 61%

Table: State space generation using SCOOP.
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GSPN analysis
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Case study C

-
Min. unbounded reach.: 1.0
Max. unbounded reach.: 1.0
Min. expected time: 0.0
GSPN Max. expected time: 0.2 ReSU|tS
(PNML) Min. LRA: 0.0

Max. LRA: 0.4

reach P1 =1 & P65 = 2 #GOALS S2

A
GEMMA IMCA
A\

GSPN(P1:N,P2:N,P3:N,

P4:N,P5:N) =

P2 >= 1 =>T2 . SCOOP

GSPN[P2--, P4++] ~
MAPA + P5 >= 1 => (4.0) . . g MA
GSPN[P2++, P5--] (optlmlsed)

+ ...

init GSPN(1,1,1,0,1)

reach P1 =1 & P5 = 2 | #GOALS S2

&
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Conclusions and Future Work

Conclusions:
@ We introduced a new process-algebraic framework (MAPA)
with data for modelling and generating Markov automata

@ We introduced the MLPPE for easy state space generation,
parallel composition and reduction techniques
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Conclusions:

We introduced a new process-algebraic framework (MAPA)
with data for modelling and generating Markov automata

We introduced the MLPPE for easy state space generation,
parallel composition and reduction techniques

We showed an encoding of MAPA into prCRL

We showed when prCRL techniques can be used safely by
encoding, using a novel notion of bisimulation

All our results apply to LTSs, DTMCs, CTMCs, IMCs and PAs
Model checking of MAs and GSPNs is now possible

Future Work:

Generalise confluence reduction to MAs and MAPA
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Questions

Questions?

Have a look at fmt.cs.utwente.nl/~timmer/scoop
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