

Actual Test Coverage for Embedded Systems

Mark Timmer University of Twente

14th Dutch Testing Day November 27, 2008

Contents

- Introduction
- 2 Evaluating actual coverage
- 3 Predicting actual coverage
- Test suites
- Example
- 6 Conclusions and future work

Why coverage?

- Testing is inherently incomplete
- Testing does increase our confidence in the system
- A notion of quality of a test suite is necessary
- Coverage: 'amount' of specification / implementation examined by a test suite

Why coverage?

- Testing is inherently incomplete
- Testing does increase our confidence in the system
- A notion of quality of a test suite is necessary
- Coverage: 'amount' of specification / implementation examined by a test suite

Why coverage?

- Testing is inherently incomplete
- Testing does increase our confidence in the system
- A notion of quality of a test suite is necessary
- Coverage: 'amount' of specification / implementation examined by a test suite

Why coverage?

- Testing is inherently incomplete
- Testing does increase our confidence in the system
- A notion of quality of a test suite is necessary
- Coverage: 'amount' of specification / implementation examined by a test suite

Coverage: $\frac{6}{13} = 46\%$.

Early work on coverage

Statement coverage

Path coverage

Early work on coverage

Statement coverage

Path coverage

Limitations: - all faults are considered of equal severity

- no probabilities
- syntactic point of view

Early work on coverage

Statement coverage

Path coverage

Limitations: - all faults are considered of equal severity

- no probabilities
- syntactic point of view

Recipe 1: vegetable soup

- Chop an union
- Slice carrots and mushroom
- Boil one liter of water
- Put everything in the water
- Wait a while

Early work on coverage

Statement coverage

Path coverage

Limitations: - all faults are considered of equal severity

- no probabilities
- syntactic point of view

Recipe 1: vegetable soup

- Chop an union
- Slice carrots and mushroom
- Boil one liter of water
- Put everything in the water
- Wait a while

Early work on coverage

Statement coverage

Path coverage

Limitations: - all faults are considered of equal severity

- no probabilities
- syntactic point of view

Recipe 1: vegetable soup

- Chop an union
- Slice carrots and mushroom
- Boil one liter of water
- Put everything in the water
- Wait a while

Early work on coverage

Statement coverage

- Path coverage
- Limitations: all faults are considered of equal severity
 - no probabilities
 - syntactic point of view

Recipe 1: vegetable soup

- Chop an union
- Slice carrots and mushroom
- Boil one liter of water
- Put everything in the water
- Wait a while

Recipe 2: vegetable soup

- Chop an union
- Slice a few carrots
- Slice a mushroom
- Boil one liter of water
- Put everything in the water
- Wait a while

Early work on coverage

Statement coverage

- Path coverage
- Limitations: all faults are considered of equal severity
 - no probabilities
 - syntactic point of view

Recipe 1: vegetable soup

- Chop an union
- Slice carrots and mushroom
- Boil one liter of water
- Put everything in the water
- Wait a while

Recipe 2: vegetable soup

- Chop an union
- Slice a few carrots
- Slice a mushroom
- Boil one liter of water
- Put everything in the water
- Wait a while

Early work on coverage

Statement coverage

- Path coverage
- Limitations: all faults are considered of equal severity
 - no probabilities
 - syntactic point of view

Recipe 1: vegetable soup

- Chop an union
- Slice carrots and mushroom
- Boil one liter of water
- Put everything in the water
- Wait a while

Recipe 2: vegetable soup

- Chop an union
- Slice a few carrots
- Slice a mushroom
- Boil one liter of water
- Put everything in the water
- Wait a while

Quality: $\frac{4}{6} \cdot 10 = 6.7$

Starting point for my work: semantic coverage

Previous work by Brandán Briones, Brinksma and Stoelinga

- System considered as black box
- Semantic point of view
- Fault weights

Starting point for my work: semantic coverage

Previous work by Brandán Briones, Brinksma and Stoelinga

- System considered as black box
- Semantic point of view
- Fault weights

Labelled transition systems

Starting point for my work: semantic coverage

Previous work by Brandán Briones, Brinksma and Stoelinga

- System considered as black box
- Semantic point of view
- Fault weights

Labelled transition systems

Starting point for my work: semantic coverage

Previous work by Brandán Briones, Brinksma and Stoelinga

- System considered as black box
- Semantic point of view
- Fault weights

Labelled transition systems

20ct?

Starting point for my work: semantic coverage

Previous work by Brandán Briones, Brinksma and Stoelinga

- System considered as black box
- Semantic point of view
- Fault weights

Labelled transition systems

20ct? coffee!

Starting point for my work: semantic coverage

Previous work by Brandán Briones, Brinksma and Stoelinga

- System considered as black box
- Semantic point of view
- Fault weights

Labelled transition systems

20ct? coffee! 10ct?

Starting point for my work: semantic coverage

Previous work by Brandán Briones, Brinksma and Stoelinga

- System considered as black box
- Semantic point of view
- Fault weights

Labelled transition systems

Starting point for my work: semantic coverage

Previous work by Brandán Briones, Brinksma and Stoelinga

- System considered as black box
- Semantic point of view
- Fault weights

Labelled transition systems

Starting point for my work: semantic coverage

Previous work by Brandán Briones, Brinksma and Stoelinga

- System considered as black box
- Semantic point of view
- Fault weights

Labelled transition systems

Starting point for my work: semantic coverage

Previous work by Brandán Briones, Brinksma and Stoelinga

- System considered as black box
- Semantic point of view
- Fault weights

Labelled transition systems

Starting point for my work: semantic coverage

Previous work by Brandán Briones, Brinksma and Stoelinga

- System considered as black box
- Semantic point of view
- Fault weights

Labelled transition systems

Introduction – Fault weights and coverage measures

Introduction – Fault weights and coverage measures

Introduction – Fault weights and coverage measures

Absolute potential coverage

$$4+5+3+2=14$$

Absolute potential coverage

$$10 + 15 = 25$$

Absolute potential coverage

$$10 + 15 = 25$$

- Not all faults can be detected at once
- Single executions cover only some faults
- Executing more often could increase coverage
- How many executions are needed?
- Necessary to include probabilities!

Absolute potential coverage

$$10 + 15 = 25$$

- Not all faults can be detected at once
- Single executions cover only some faults
- Executing more often could increase coverage
- How many executions are needed?
- Necessary to include probabilities!

Absolute potential coverage

$$10 + 15 = 25$$

- Not all faults can be detected at once
- Single executions cover only some faults
- Executing more often could increase coverage
- How many executions are needed?
- Necessary to include probabilities!

Absolute potential coverage

$$10 + 15 = 25$$

- Not all faults can be detected at once
- Single executions cover only some faults
- Executing more often could increase coverage
- How many executions are needed?
- Necessary to include probabilities!

Overview of actual coverage

Actual coverage

- Probabilistic execution model:
 - Branching probabilities (p^{br})
 - \bullet Conditional branching probabilities (p^{cbr})

Overview of actual coverage

Actual coverage

- Probabilistic execution model:
 - Branching probabilities (p^{br})
 - Conditional branching probabilities (p^{cbr})
- ② Evaluating actual coverage:
 - Calculating the actual coverage of a given execution or sequence of executions

Overview of actual coverage

Actual coverage

- Probabilistic execution model:
 - Branching probabilities (p^{br})
 - Conditional branching probabilities (p^{cbr})
- ② Evaluating actual coverage:

Calculating the actual coverage of a given execution or sequence of executions

Opening actual coverage:

Predicting the actual coverage a test case or test suite yields.

Fault coverage

Fault coverage

Fault coverage

Fault coverage

Conditional branching probabilities p^{cbr}

- 1 If a fault is shown present, it is completely covered
- 2 If a fault is shown absent, it is partially covered.

- If a fault is shown present, it is completely covered
- ② If a fault is shown absent, it is partially covered.

Fault coverage

- If a fault is shown present, it is completely covered
- ② If a fault is shown absent, it is partially covered.

Fault coverage coffee! coffee! 10

Fault coverage tea! tea!

Fault coverage

- If a fault is shown present, it is completely covered
- ② If a fault is shown absent, it is partially covered.

Fault coverage coffee! coffee!

Fault coverage tea! tea! 15

Fault coverage

- If a fault is shown present, it is completely covered
- ② If a fault is shown absent, it is partially covered.

Fault coverage coffee! coffee! 4 - 6.4 - 7.8 - 8.7

Fault coverage tea! tea!

Actual coverage

Actual coverage of an execution or sequence of executions:

Actual coverage

Actual coverage of an execution or sequence of executions:

Actual coverage

Actual coverage of an execution or sequence of executions:

Actual coverage

Actual coverage of an execution or sequence of executions:

The sum of all fault coverages

faultCov(b! a? d!)

Actual coverage

Actual coverage of an execution or sequence of executions:

The sum of all fault coverages

faultCov(b! a? d!)

Actual coverage

Actual coverage of an execution or sequence of executions:

$$faultCov(b! \ a? \ d!) = 4$$

 $faultCov(b! \ a? \ c!) =$

Actual coverage

Actual coverage of an execution or sequence of executions:

The sum of all fault coverages

 $faultCov(b! \ a? \ d!) = faultCov(b! \ a? \ c!) =$

Actual coverage

Actual coverage of an execution or sequence of executions:

faultCov(b! a? d!)	=	4
,	_	•
faultCov(b! a? c!)	=	4.8
faultCov(d! a? b!)	=	0
faultCov(d! a? d!)	=	0

Actual coverage

Actual coverage of an execution or sequence of executions:


```
faultCov(b! a? d!)
faultCov(b! \ a? \ c!) = 4.8
faultCov(d! \ a? \ b!) = 0
faultCov(d! a? d!) =
faultCov(c!)
```

Actual coverage

Actual coverage of an execution or sequence of executions:

faultCov(b! a? d!)	=	4
faultCov(b! a? c!)	=	4.8
faultCov(d! a? b!)	=	0
faultCov(d! a? d!)	=	0
faultCov(c!)	=	1.4

Actual coverage

Actual coverage of an execution or sequence of executions:


```
faultCov(b! a? d!)
faultCov(b! \ a? \ c!) = 4.8
faultCov(d! \ a? \ b!) = 0
faultCov(d! a? d!)
faultCov(c!)
```

$$absCov = 10.2$$

Actual coverage distribution of a test case

Actual coverage distribution of a test case

Actual coverage distribution of a test case

Actual coverage distribution of a test case

Actual coverage distribution of a test case

Actual coverage distribution of a test case

Actual coverage distribution of a test case

${\sf absCov}$	\mathbb{P}	
10	0.015	
15	0.005	
4	0.735	
6	0.245	

Actual coverage distribution of a test case

absCov	\mathbb{P}	×
10	0.015	0.150
15	0.005	0.075
4	0.735	2.940
6	0.245	1.470

Actual coverage distribution of a test case

absCov	\mathbb{P}	×
10	0.015	0.150
15	0.005	0.075
4	0.735	2.940
6	0.245	1.470 +
$\mathbb{E}(ab)$	sCov) =	4.635

Branching probabilities

Branching probabilities

The branching probabilities p^{br} describe how the implementation is expected to behave

Branching probabilities

Branching probabilities

The *branching probabilities* p^{br} describe how the implementation is expected to behave

Branching probabilities

Branching probabilities

The branching probabilities p^{br} describe how the implementation is expected to behave

• Suppose we perform three executions of

• Suppose we perform three executions of

Possible observation: [blue, blue, red]

Suppose we perform three executions of

- Possible observation: [blue, blue, red]
- Actual coverage: 15 + 6.4 = 21.4

Suppose we perform three executions of

- Possible observation: [blue, blue, red]
- Actual coverage: 15 + 6.4 = 21.4
- Many observations possible: $O(|exec|^n)$

Expected actual coverage for a sequence of executions

Theorem

$$\mathbb{E}(\mathit{actCov}_n) = \sum_{\sigma a \in \mathit{err}_t} f(\sigma a) \cdot \left((1 - (1 - p^{\mathrm{to}}(\sigma a))^n) \cdot 1 + \sum_{k=0}^n \binom{n}{k} p^{\mathrm{to}}(\sigma)^k (1 - p^{\mathrm{to}}(\sigma))^{n-k} \cdot (1 - p^{\mathrm{br}}(a \mid \sigma))^k \cdot (1 - (1 - p^{\mathrm{cbr}}(a \mid \sigma)^k)) \right)$$

Expected actual coverage for a sequence of executions

Theorem

$$\begin{split} \mathbb{E}(\textit{actCov}_n) &= \sum_{\sigma a \in \textit{err}_t} f(\sigma a) \cdot \left((1 - (1 - p^{\text{to}}(\sigma a))^n) \cdot 1 + \\ &\sum_{k=0}^n \binom{n}{k} p^{\text{to}}(\sigma)^k (1 - p^{\text{to}}(\sigma))^{n-k} \cdot \\ &(1 - p^{\text{br}}(a \mid \sigma))^k \cdot \\ &(1 - (1 - p^{\text{cbr}}(a \mid \sigma)^k)) \\ \end{pmatrix} \end{split}$$

Expected actual coverage for a sequence of executions

Theorem

$$\mathbb{E}(\textit{actCov}_n) = \sum_{\sigma a \in \textit{err}_t} f(\sigma a) \cdot \left((1 - (1 - p^{\text{to}}(\sigma a))^n) \cdot 1 + \sum_{k=0}^n \binom{n}{k} p^{\text{to}}(\sigma)^k (1 - p^{\text{to}}(\sigma))^{n-k} \cdot (1 - p^{\text{to}}(a \mid \sigma))^k \cdot (1 - (1 - p^{\text{cbr}}(a \mid \sigma)^k)) \right)$$

Asympotical behaviour of actual coverage

Asympotical behaviour of actual coverage

Theorem

 $\lim_{n\to\infty}\mathbb{E}(\text{actual coverage}_n)=\text{potential coverage}$

Actual coverage for test suites

- Very similar to actual coverage for test cases: sum all the fault coverages
- Take into account in how many test cases an erroneous trace is contained
- Again, an efficient formula for the expected actual coverage exists

$\mathsf{Theorem}$

 $\lim_{n\to\infty} \mathbb{E}(\text{actual coverage}_n) = \text{potential coverage}$

Prediction of actual coverage

$$\mathbb{E}(A_{t_1}^1)$$
 = 197.0
 $\mathbb{E}(A_{t_2}^1)$
 = 156.8

 $\mathbb{E}(A_{t_1}^5)$
 = 729.1
 $\mathbb{E}(A_{t_2}^5)$
 = 639.8

 $\mathbb{E}(A_{t_1}^{10})$
 = 1076.9
 $\mathbb{E}(A_{t_2}^{10})$
 = 1032.1

 $\mathbb{E}(A_{t_1}^{50})$
 = 1704.6
 $\mathbb{E}(A_{t_2}^{50})$
 = 1848.0

 $\mathbb{E}(A_{t_1}^{250})$
 = 1917.7
 $\mathbb{E}(A_{t_2}^{250})$
 = 1938.0

Prediction of actual coverage

$$\mathbb{E}(A_{t_1}^1) = 197.0$$
 > $\mathbb{E}(A_{t_2}^1) = 156.8$
 $\mathbb{E}(A_{t_1}^5) = 729.1$ > $\mathbb{E}(A_{t_2}^5) = 639.8$
 $\mathbb{E}(A_{t_1}^{10}) = 1076.9$ > $\mathbb{E}(A_{t_2}^{10}) = 1032.1$
 $\mathbb{E}(A_{t_1}^{50}) = 1704.6$ < $\mathbb{E}(A_{t_2}^{50}) = 1848.0$
 $\mathbb{E}(A_{t_1}^{250}) = 1917.7$ < $\mathbb{E}(A_{t_2}^{250}) = 1938.0$

Simulation and evaluation actual coverage

					I		
			t_1			t_2	
	n	$\mathbb{E}(A_{t_1}^n)$	Sim.	std.	$\mathbb{E}(A_{t_2}^n)$	Sim.	std.
	1	197.0	213.3	50.1	156.8	155.1	60.8
	5	729.1	762.1	84.0	639.8	629.7	107.0
	10	1076.9	1112.6	104.8	1032.1	1013.3	114.8
	50	1704.6	1743.3	62.4	1848.0	1831.2	39.5
	250	1917.7	1925.8	11.2	1938.0	1938.0	0.0
					_		
			t_1			t_2	
	n	$\mathbb{E}(A_{t_1}^n)$	$\frac{t_1}{Sim.}$	std.	$\mathbb{E}(A_{t_2}^n)$	$\frac{t_2}{Sim.}$	std.
-	n 1	$\mathbb{E}(A_{t_1}^n)$ 197.0	-	std. 48.4	$\mathbb{E}(A_{t_2}^n)$ 156.8	-	std. 52.0
-		1	Sim.	48.4		Sim. 174.7	
-	1	197.0	Sim. 229.1	48.4	156.8 639.8	Sim. 174.7	52.0 89.4
-	1 5	197.0 729.1	Sim. 229.1 813.9	48.4 56.5 94.8	156.8 639.8 1032.1	Sim. 174.7 711.6	52.0 89.4 92.9

Conclusions and future work

Main results

- New notion of coverage: actual coverage
- Evaluating actual coverage of a given execution
- Predicting actual coverage of a test case or test suite

Conclusions and future work

Main results

- New notion of coverage: actual coverage
- Evaluating actual coverage of a given execution
- Predicting actual coverage of a test case or test suite

For more details, see my Master's Thesis (wwwhome.cs.utwente.nl/~timmer)

Conclusions and future work

Main results

- New notion of coverage: actual coverage
- Evaluating actual coverage of a given execution
- Predicting actual coverage of a test case or test suite

For more details, see my Master's Thesis (wwwhome.cs.utwente.nl/~timmer)

Directions for future work

- Validation of the framework: tool support, case studies
- Dependencies between errors
- Accuracy of approximations
- On-the-fly test derivation

Questions

