UNIVERSITY OF TWENTE.

Formal Methods & Tools.

Confluence Reduction for Markov Automata

Mark Timmer March 23, 2013

Joint work with Jaco van de Pol and Mariëlle Stoelinga

The overall goal: efficient and expressive modelling

Specifying systems with

- ProbabilityDTMCs
- Stochastic timing ← CTMCs

The overall goal: efficient and expressive modelling

Specifying systems with

- Nondeterminism Probabilistic Automata (PAs)
- Probability
- Stochastic timing

The overall goal: efficient and expressive modelling

Specifying systems with

- Nondeterminism ←
- Probability
- Stochastic timing ◄

Interactive Markov Chains (IMCs)

The overall goal: efficient and expressive modelling

Specifying systems with

- Nondeterminism
- ProbabilityMarkov Automata (MAs)
- Stochastic timing →

The overall goal: efficient and expressive modelling

Specifying systems with

- Nondeterminism

 ✓
- ProbabilityMarkov Automata (MAs)
- Stochastic timing -

The overall goal: efficient and expressive modelling

Specifying systems with

- Nondeterminism ←
- ProbabilityMarkov Automata (MAs)
- Stochastic timing ◄

The overall goal: efficient and expressive modelling

Specifying systems with

- Nondeterminism ←
- ProbabilityMarkov Automata (MAs)
- Stochastic timing ◄

The overall goal: efficient and expressive modelling

Specifying systems with

- Nondeterminism ←
- ProbabilityMarkov Automata (MAs)
- Stochastic timing ◄

The overall goal: efficient and expressive modelling

Specifying systems with

- Nondeterminism ←
- ProbabilityMarkov Automata (MAs)
- Stochastic timing ◄

Higher-level formalisms that can be mapped to MAs

Higher-level formalisms that can be mapped to MAs

Introduction

Conclusions

Higher-level formalisms mapped to MAs

Higher-level formalisms mapped to MAs

$$\begin{split} \textit{System}(P_1: \mathbb{N}, P_2: \mathbb{N}, P_3: \mathbb{N}, P_4: \mathbb{N}, P_5: \mathbb{N}, P_6: \mathbb{N}) = \\ P_1 \geq 1 \implies \tau \cdot \mathsf{System}(P_1 - 1, P_2 + 1, P_3, P_4, P_5, P_6) \\ + P_2 \geq 1 \implies \tau \cdot \mathsf{System}(P_1, P_2 - 1, P_3 + 1, P_4, P_5, P_6) \\ + P_5 \geq 1 \implies \lambda \cdot \mathsf{System}(P_1 + 1, P_2, P_3, P_4 + 1, P_5 - 1, P_6) \\ + P_6 \geq 1 \implies \mu \cdot \mathsf{System}(P_1, P_2, P_3, P_4 + 1, P_5, P_6 - 1) \\ + (P_3 \geq 1 \land P_4 \geq 1) \lor (P_4 \geq 1) \implies \tau \cdot \dots \end{split}$$

Higher-level formalisms mapped to MAs

$$\begin{split} \textit{System}(\textit{P}_1: \mathbb{N}, \textit{P}_2: \mathbb{N}, \textit{P}_3: \mathbb{N}, \textit{P}_4: \mathbb{N}, \textit{P}_5: \mathbb{N}, \textit{P}_6: \mathbb{N}) = \\ \textit{P}_1 \geq 1 \implies \tau \cdot \mathsf{System}(\textit{P}_1 - 1, \textit{P}_2 + 1, \textit{P}_3, \textit{P}_4, \textit{P}_5, \textit{P}_6) \\ + \textit{P}_2 \geq 1 \implies \tau \cdot \mathsf{System}(\textit{P}_1, \textit{P}_2 - 1, \textit{P}_3 + 1, \textit{P}_4, \textit{P}_5, \textit{P}_6) \\ + \textit{P}_5 \geq 1 \implies \lambda \cdot \mathsf{System}(\textit{P}_1 + 1, \textit{P}_2, \textit{P}_3, \textit{P}_4 + 1, \textit{P}_5 - 1, \textit{P}_6) \\ + \textit{P}_6 \geq 1 \implies \mu \cdot \mathsf{System}(\textit{P}_1, \textit{P}_2, \textit{P}_3, \textit{P}_4 + 1, \textit{P}_5, \textit{P}_6 - 1) \\ + (\textit{P}_3 \geq 1 \land \textit{P}_4 \geq 1) \lor (\textit{P}_4 \geq 1) \implies \tau \cdot \dots \end{split}$$

Higher-level formalisms mapped to MAs

$$\begin{split} \textit{System}(P_1: \mathbb{N}, P_2: \mathbb{N}, P_3: \mathbb{N}, P_4: \mathbb{N}, P_5: \mathbb{N}, P_6: \mathbb{N}) = \\ P_1 \geq 1 \implies \tau \cdot \mathsf{System}(P_1 - 1, P_2 + 1, P_3, P_4, P_5, P_6) \\ + P_2 \geq 1 \implies \tau \cdot \mathsf{System}(P_1, P_2 - 1, P_3 + 1, P_4, P_5, P_6) \\ + P_5 \geq 1 \implies \lambda \cdot \mathsf{System}(P_1 + 1, P_2, P_3, P_4 + 1, P_5 - 1, P_6) \\ + P_6 \geq 1 \implies \mu \cdot \mathsf{System}(P_1, P_2, P_3, P_4 + 1, P_5, P_6 - 1) \\ + (P_3 \geq 1 \land P_4 \geq 1) \lor (P_4 \geq 1) \implies \tau \cdot \dots \end{split}$$

$$\begin{split} \textit{System}(P_1: \mathbb{N}, P_2: \mathbb{N}, P_3: \mathbb{N}, P_4: \mathbb{N}, P_5: \mathbb{N}, P_6: \mathbb{N}) = \\ P_1 \geq 1 \implies \tau \cdot \mathsf{System}(P_1 - 1, P_2 + 1, P_3, P_4, P_5, P_6) \\ + P_2 \geq 1 \implies \tau \cdot \mathsf{System}(P_1, P_2 - 1, P_3 + 1, P_4, P_5, P_6) \\ + P_5 \geq 1 \implies \lambda \cdot \mathsf{System}(P_1 + 1, P_2, P_3, P_4 + 1, P_5 - 1, P_6) \\ + P_6 \geq 1 \implies \mu \cdot \mathsf{System}(P_1, P_2, P_3, P_4 + 1, P_5, P_6 - 1) \\ + (P_3 \geq 1 \wedge P_4 \geq 1) \vee (P_4 \geq 1) \implies \tau \cdot \dots \end{split}$$

$$\begin{split} \textit{System}(P_1: \mathbb{N}, P_2: \mathbb{N}, P_3: \mathbb{N}, P_4: \mathbb{N}, P_5: \mathbb{N}, P_6: \mathbb{N}) = \\ P_1 \geq 1 \implies \tau \cdot \mathsf{System}(P_1 - 1, P_2 + 1, P_3, P_4, P_5, P_6) \\ + P_2 \geq 1 \implies \tau \cdot \mathsf{System}(P_1, P_2 - 1, P_3 + 1, P_4, P_5, P_6) \\ + P_5 \geq 1 \implies \lambda \cdot \mathsf{System}(P_1 + 1, P_2, P_3, P_4 + 1, P_5 - 1, P_6) \\ + P_6 \geq 1 \implies \mu \cdot \mathsf{System}(P_1, P_2, P_3, P_4 + 1, P_5, P_6 - 1) \\ + (P_3 \geq 1 \wedge P_4 \geq 1) \vee (P_4 \geq 1) \implies \tau \cdot \dots \end{split}$$

Introduction

Conclusions

Contents

- Introduction
- 2 Confluence for Markov Automata
- 3 State Space Reduction Using Confluence
- 4 Symbolic Detection on MAPA Specifications
- 5 Implementation and Case Studies
- 6 Conclusions and Future Work

Case studies

Invisible transitions connecting equivalent states

Invisible transitions in confluence reduction:

- ullet Labelled by au
- Deterministic

Invisible transitions in confluence reduction:

- Labelled by τ
- Deterministic

Deterministic τ -steps might disable behaviour...

Invisible transitions in confluence reduction:

- ullet Labelled by au
- Deterministic

Deterministic τ -steps might disable behaviour. . .

Invisible transitions in confluence reduction:

- ullet Labelled by au
- Deterministic

Deterministic τ -steps might disable behaviour... ... though often, they connect equivalent states

Invisible transitions in confluence reduction:

- Labelled by τ
- Deterministic

Deterministic τ -steps might disable behaviour...

... though often, they connect equivalent states

Invisible transitions in confluence reduction:

- Labelled by τ
- Deterministic

Deterministic τ -steps might disable behaviour...

... though often, they connect equivalent states

Invisible transitions in confluence reduction:

- Labelled by τ
- Deterministic

Deterministic τ -steps might disable behaviour...

... though often, they connect equivalent states

Non-probabilistic and probabilistic confluence reduction

Confluence reduction:

denoting a subset of the invisible transitions as confluent.

Confluence reduction:

denoting a subset of the invisible transitions as confluent.

Confluence reduction:

denoting a subset of the invisible transitions as confluent.

Confluence reduction:

denoting a subset of the invisible transitions as confluent.

Confluence reduction:

denoting a subset of the invisible transitions as confluent.

Confluence reduction:

denoting a subset of the invisible transitions as confluent.

Confluence reduction:

denoting a subset of the invisible transitions as confluent.

Confluence reduction:

denoting a subset of the invisible transitions as confluent.

Non-probabilistically:

Probabilistically:

Non-probabilistic and probabilistic confluence reduction

Confluence reduction:

denoting a subset of the invisible transitions as confluent.

Non-probabilistically:

Probabilistically:

Non-probabilistic and probabilistic confluence reduction

Confluence reduction:

denoting a subset of the invisible transitions as confluent.

Non-probabilistically:

Probabilistically:

Probabilistic example

Probabilistic example

9 / 21

Probabilistic example

Our solution: confluence classification

Symbolic detection

Our solution: confluence classification

- Mimicking always by a transition from the same group
- For each group, either all transitions or no transitions are confluent

Our solution: confluence classification

Symbolic detection

- Mimicking always by a transition from the same group
- For each group, either all transitions or no transitions are confluent

Our solution: confluence classification

- Mimicking always by a transition from the same group
- For each group, either all transitions or no transitions are confluent

Closure under unions is now really ensured.

Conclusions

Case studies

Conclusions

A process algebra for Markov automata: MAPA

Specification language MAPA:

- Based on μ CRL (so data), with additional probabilistic choice and Markovian rates
- Semantics defined in terms of Markov automata
- Minimal set of operators to facilitate formal manipulation
- Syntactic sugar easily definable

Specification language MAPA:

- Based on μ CRL (so data), with additional probabilistic choice and Markovian rates
- Semantics defined in terms of Markov automata
- Minimal set of operators to facilitate formal manipulation
- Syntactic sugar easily definable

Operators

$$p ::= Y(t) \mid c \Rightarrow p \mid p+p \mid \sum_{x:D} p \mid a(t) \sum_{x:D} f : p \mid (\lambda) \cdot p$$

A process algebra for Markov automata: MAPA

Specification language MAPA:

- ullet Based on μ CRL (so data), with additional probabilistic choice and Markovian rates
- Semantics defined in terms of Markov automata
- Minimal set of operators to facilitate formal manipulation
- Syntactic sugar easily definable

Operators

$$p ::= Y(t) \mid c \Rightarrow p \mid p+p \mid \sum_{x:D} p \mid a(t) \sum_{x:D} f : p \mid (\lambda) \cdot p$$

 Composibility via parallel composition, encapsulation, hiding and renaming

MLPPEs

We defined a special format for MAPA, the MLPPE:

$$egin{aligned} X(g:G) &= \sum_{i \in I} \sum_{oldsymbol{d}_i : oldsymbol{D}_i} c_i \Rightarrow egin{aligned} eta_i : oldsymbol{E}_i \ &+ \sum_{j \in J} \sum_{oldsymbol{d}_j : oldsymbol{D}_j} c_j \Rightarrow (\lambda_j) \cdot X(oldsymbol{n}_j) \end{aligned}$$

Example of an MLPPE

GSPN-generated MAPA specification

$$\begin{split} \textit{System}(P_1: \mathbb{N}, P_2: \mathbb{N}, P_3: \mathbb{N}, P_4: \mathbb{N}, P_5: \mathbb{N}, P_6: \mathbb{N}) = \\ P_1 \geq 1 \implies \tau \cdot \mathsf{System}(P_1 - 1, P_2 + 1, P_3, P_4, P_5, P_6) \\ + P_2 \geq 1 \implies \tau \cdot \mathsf{System}(P_1, P_2 - 1, P_3 + 1, P_4, P_5, P_6) \\ + P_5 \geq 1 \implies \lambda \cdot \mathsf{System}(P_1 + 1, P_2, P_3, P_4 + 1, P_5 - 1, P_6) \\ + P_6 \geq 1 \implies \mu \cdot \mathsf{System}(P_1, P_2, P_3, P_4 + 1, P_5, P_6 - 1) \\ + (P_3 \geq 1 \land P_4 \geq 1) \lor (P_4 \geq 1) \implies \tau \sum_{i: \{4,5\}} f: \\ \mathsf{System}(P_1, P_2, \mathsf{if}\ i = 4\ \mathsf{then}\ P_3 - 1\ \mathsf{else}\ P_3, P_4 - 1, \\ \mathsf{if}\ i = 4\ \mathsf{then}\ P_5 + 1\ \mathsf{else}\ P_5, \\ \mathsf{if}\ i = 4\ \mathsf{then}\ P_6\ \mathsf{else}\ P_6 + 1) \end{split}$$

MLPPEs

We defined a special format for MAPA, the MLPPE:

$$egin{aligned} X(g:G) &= \sum_{i \in I} \sum_{oldsymbol{d}_i: oldsymbol{D}_i} c_i \Rightarrow \mathsf{a}_i(oldsymbol{b}_i) \sum_{oldsymbol{e}_i: oldsymbol{E}_i} f_i: X(oldsymbol{n}_i) \ &+ \sum_{j \in J} \sum_{oldsymbol{d}_j: oldsymbol{D}_j} c_j \Rightarrow (\lambda_j) \cdot X(oldsymbol{n}_j) \end{aligned}$$

Advantages of using MLPPEs instead of MAPA specifications:

- Easy state space generation
- Straight-forward parallel composition
- Symbolic optimisations enabled at the language level

MLPPEs

We defined a special format for MAPA, the MLPPE:

$$egin{aligned} X(g:G) &= \sum_{i \in I} \sum_{oldsymbol{d}_i: oldsymbol{D}_i} c_i \Rightarrow egin{aligned} eta_i (oldsymbol{b}_i) \sum_{oldsymbol{e}_i: oldsymbol{E}_i} f_i: X(oldsymbol{n}_i) \ &+ \sum_{j \in J} \sum_{oldsymbol{d}_j: oldsymbol{D}_j} c_j \Rightarrow (\lambda_j) \cdot X(oldsymbol{n}_j) \end{aligned}$$

Advantages of using MLPPEs instead of MAPA specifications:

- Easy state space generation
- Straight-forward parallel composition
- Symbolic optimisations enabled at the language level

$\mathsf{Theorem}$

Every specification (without unguarded recursion) can be linearised to an MLPPE, preserving strong bisimulation.

Confluence State space reduction Symbolic detection

Detecting confluence symbolically on MLPPEs

Symbolic detection of confluence: denote entire summands to be confluent (i.e., all their concrete transitions are confluent)

Case studies

Conclusions

Symbolic detection of confluence: denote entire summands to be confluent (i.e., all their concrete transitions are confluent)

- Each summand is a group in the confluence classification
- Underapproximation of the actual confluent transitions

Detecting confluence symbolically on MLPPEs

Symbolic detection of confluence: denote entire summands to be confluent (i.e., all their concrete transitions are confluent)

- Each summand is a group in the confluence classification
- Underapproximation of the actual confluent transitions

How to know whether a summand is confluent?

Detecting confluence symbolically on MLPPEs

Symbolic detection of confluence: denote entire summands to be confluent (i.e., all their concrete transitions are confluent)

- Each summand is a group in the confluence classification
- Underapproximation of the actual confluent transitions

How to know whether a summand is confluent?

• Its action should be τ

Symbolic detection of confluence: denote entire summands to be confluent (i.e., all their concrete transitions are confluent)

- Each summand is a group in the confluence classification
- Underapproximation of the actual confluent transitions

- Its action should be τ
- Its next state should be chosen nonprobabilistically (heuristic: there is no probabilistic choice)

Symbolic detection of confluence: denote entire summands to be confluent (i.e., all their concrete transitions are confluent)

- Each summand is a group in the confluence classification
- Underapproximation of the actual confluent transitions

- Its action should be τ
- Its next state should be chosen nonprobabilistically (heuristic: there is no probabilistic choice)
- It should commute with all the other summands.

Symbolic detection of confluence: denote entire summands to be confluent (i.e., all their concrete transitions are confluent)

- Each summand is a group in the confluence classification
- Underapproximation of the actual confluent transitions

- Its action should be τ
- Its next state should be chosen nonprobabilistically (heuristic: there is no probabilistic choice)
- It should commute with all the other interactive summands.

Symbolic detection of confluence: denote entire summands to be confluent (i.e., all their concrete transitions are confluent)

- Each summand is a group in the confluence classification
- Underapproximation of the actual confluent transitions

- Its action should be τ
- Its next state should be chosen nonprobabilistically (heuristic: there is no probabilistic choice)
- It should commute with all the other interactive summands
 - They does not disable each other
 - They should not influence each other's action
 - They should not influence each other's probability expression
 - Their order should not influence the next state

$$X(g:G) = \sum_{\substack{d_i:D_i \\ \cdots}} c_i \Rightarrow \tau \cdot X(n_i)$$

$$\vdots$$

$$+ \sum_{\substack{d_j:D_j \\ c_j \Rightarrow a_j \sum_{e_j:E_j}} f_j \colon X(n_j)$$

18 / 21

$$egin{aligned} X(g:G) = & \sum_{oldsymbol{d}_i:D_i} c_i \Rightarrow au \cdot X(oldsymbol{n}_i) \ & \cdots \ & + \sum_{oldsymbol{d}_j:D_j} c_j \Rightarrow a_j \sum_{oldsymbol{e}_j:E_j} f_j \colon X(oldsymbol{n}_j) \end{aligned}$$

Heuristics for verifying commutativity of summands i, j:

$$egin{aligned} X(g:G) = & \sum_{oldsymbol{d}_i:D_i} c_i \Rightarrow au \cdot X(oldsymbol{n}_i) \ & \cdot \cdot \cdot \ & + \sum_{oldsymbol{d}_j:D_j} c_j \Rightarrow a_j \sum_{oldsymbol{e}_j:E_j} f_j \colon X(oldsymbol{n}_j) \end{aligned}$$

Heuristics for verifying commutativity of summands i, j:

• The conditions of i and j are disjoint

$$egin{aligned} X(g:G) = & \sum_{oldsymbol{d}_i:D_i} c_i \Rightarrow au \cdot X(oldsymbol{n}_i) \ & \cdot \cdot \cdot \ & + \sum_{oldsymbol{d}_j:D_j} c_j \Rightarrow a_j \sum_{oldsymbol{e}_j:E_j} f_j \colon X(oldsymbol{n}_j) \end{aligned}$$

Heuristics for verifying commutativity of summands i, j:

• The conditions of i and j are disjoint

i:
$$pc = 3 \Rightarrow \tau \quad \cdot X(pc := 4)$$

$$j: pc = 5 \Rightarrow send(y) \cdot X(pc := 1)$$

$$X(g:G) = \sum_{\substack{d_i:D_i \\ \dots}} c_i \Rightarrow \tau \cdot X(n_i)$$

 $+ \sum_{\substack{d_j:D_j \\ n}} c_j \Rightarrow a_j \sum_{\substack{e_j:E_j }} f_j \colon X(n_j)$

Heuristics for verifying commutativity of summands i, j:

• The conditions of i and j are disjoint

$$i: pc = 3 \Rightarrow \tau \quad X(pc := 4)$$

$$j: pc = 5 \Rightarrow send(y) \cdot X(pc := 1)$$

Neither summand uses variables that are changed by the other

$$X(g:G) = \sum_{\substack{d_i:D_i \\ \dots}} c_i \Rightarrow \tau \cdot X(n_i)$$

$$+ \sum_{\substack{d_j:D_j \\ d_j:E_j}} c_j \Rightarrow a_j \sum_{\substack{e_j:E_j \\ e_j:E_j}} f_j \colon X(n_j)$$

Heuristics for verifying commutativity of summands i, j:

• The conditions of i and j are disjoint

i:
$$pc = 3 \Rightarrow \tau \quad X(pc := 4)$$

i: $pc = 5 \Rightarrow send(v) \cdot X(pc := 1)$

Neither summand uses variables that are changed by the other

i:
$$pc1 = 2 \land x > 5 \land y > 2 \Rightarrow \tau \quad X(pc1 := 3, x := 0)$$

j: $pc2 = 1 \land y > 2 \qquad \Rightarrow send(y) \cdot X(pc2 := 2)$

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Heuristics for verifying commutativity of summands i, j:

• The conditions of i and j are disjoint

i:
$$pc = 3 \Rightarrow \tau \quad X(pc := 4)$$

i: $pc = 5 \Rightarrow send(v) \cdot X(pc := 1)$

Neither summand uses variables that are changed by the other

i:
$$pc1 = 2 \land x > 5 \land y > 2 \Rightarrow \tau \quad X(pc1 := 3, x := 0)$$

j: $pc2 = 1 \land y > 2 \quad \Rightarrow send(y) \cdot X(pc2 := 2)$

$$X(g:G) = \sum_{\substack{d_i:D_i \\ \dots}} c_i \Rightarrow \tau \cdot X(n_i)$$

$$+ \sum_{\substack{d_j:D_j \\ d_j:E_j}} c_j \Rightarrow a_j \sum_{\substack{e_j:E_j \\ e_j:E_j}} f_j \colon X(n_j)$$

Heuristics for verifying commutativity of summands i, j:

• The conditions of i and j are disjoint

i:
$$pc = 3 \Rightarrow \tau \quad X(pc := 4)$$

i: $pc = 5 \Rightarrow send(v) \cdot X(pc := 1)$

Neither summand uses variables that are changed by the other

i:
$$pc1 = 2 \land x > 5 \land y > 2 \Rightarrow \tau \quad X(pc1 := 3, x := 0)$$

j: $pc2 = 1 \land y > 2 \quad \Rightarrow send(y) \cdot X(pc2 := 2)$

(Exception allowed: change such as x := x + 1, usage such as $x \ge 2$)

$$egin{aligned} X(m{g}:m{G}) = & \sum_{m{d}_i:D_i} c_i \Rightarrow au \cdot X(m{n}_i) \ & \cdots \ & + \sum_{m{d}_j:D_j} c_j \Rightarrow a_j \sum_{m{e}_j:E_j} f_j \colon X(m{n}_j) \end{aligned}$$

Heuristics for verifying commutativity of summands i, j:

• The conditions of i and j are disjoint

i:
$$pc = 3 \Rightarrow \tau \quad X(pc := 4)$$

j: $pc = 5 \Rightarrow send(y) \cdot X(pc := 1)$

Neither summand uses variables that are changed by the other

i:
$$pc1 = 2 \land x > 5 \land y > 2 \Rightarrow \tau \quad X(pc1 := 3, x := 0)$$

i: $pc2 = 1 \land y > 2 \quad \Rightarrow send(y) \cdot X(pc2 := 2)$

(Exception allowed: change such as x := x + 1, usage such as $x \ge 2$)

 \bullet i = i and this summand only produces one transition per state

$$egin{aligned} X(g:G) = & \sum_{oldsymbol{d}_i:D_i} c_i \Rightarrow au \cdot X(oldsymbol{n}_i) \ & \cdot \cdot \cdot \ & + \sum_{oldsymbol{d}_j:D_j} c_j \Rightarrow \mathsf{a}_j \sum_{oldsymbol{e}_j:E_j} f_j \colon X(oldsymbol{n}_j) \end{aligned}$$

Heuristics for verifying commutativity of summands i, j:

• The conditions of i and j are disjoint

i:
$$pc = 3 \Rightarrow \tau \quad X(pc := 4)$$

j: $pc = 5 \Rightarrow send(v) \cdot X(pc := 1)$

Neither summand uses variables that are changed by the other

i:
$$pc1 = 2 \land x > 5 \land y > 2 \Rightarrow \tau \quad X(pc1 := 3, x := 0)$$

i: $pc2 = 1 \land y > 2 \quad \Rightarrow send(y) \cdot X(pc2 := 2)$

(Exception allowed: change such as x := x + 1, usage such as $x \ge 2$)

 \bullet i = i and this summand only produces one transition per state i: $pc = 1 \Rightarrow \tau \cdot X(pc := 2)$

Implementation

We implemented:

- GEMMA
 - Transform GSPNs to MAPA specifications
- SCOOP
 - Generate Markov automata from MAPA specifications
 - Optimise specifications, apply confluence reduction

Implementation

We implemented:

- GEMMA
 - Transform GSPNs to MAPA specifications
- SCOOP
 - Generate Markov automata from MAPA specifications
 - Optimise specifications, apply confluence reduction

We use:

 IMCA: Quantitative analysis on Markov automata (expected time, time-bounded reachability, long-run average)

Implementation

We implemented:

- GEMMA
 - Transform GSPNs to MAPA specifications
- SCOOP
 - Generate Markov automata from MAPA specifications
 - Optimise specifications, apply confluence reduction

We use:

 IMCA: Quantitative analysis on Markov automata (expected time, time-bounded reachability, long-run average)

Implementation

We implemented:

- GEMMA
 - Transform GSPNs to MAPA specifications
- SCOOP
 - Generate Markov automata from MAPA specifications
 - Optimise specifications, apply confluence reduction

We use:

 IMCA: Quantitative analysis on Markov automata (expected time, time-bounded reachability, long-run average)

	Original state space			Reduced state space		Reduction	
Specification	States	Trans.	· IMCA	States Trans	. iMCA	States	Time
leader-3-7	25,505	34,257	103.8	4,652 5,235	5.2	82%	90%
leader-3-9	52,465	71,034	214.3	9,058 10,149	9.9	83%	92%
leader-3-11	93,801	127,683	431.7	15,624 17,463	16.7	83%	93%
leader-4-2	8,467	11,600	74.9	2,071 2,650	5.2	76%	90%
leader-4-3	35,468	50,612	369.3	7,014 8,874	22.4	80%	92%
leader-4-4	101,261	148,024	1,325.3	17,885 22,724	62.2	82%	94%
pol1-2-2-4	4,811	8,578	3.7	3,047 6,814	2.3	37%	32%
pol1-2-2-6	27,651	51,098	90.9	16,557 40,004	49.1	40%	47%
pol1-2-4-2	6,667	11,290	39.9	4,745 9,368	3 26.2	29%	32%
pol1-2-5-2	27,659	47,130	1,573.8	19,721 39,192	2 1,053.5	29%	33%
poll-3-2-2	2,600	4,909	7.1	1,914 4,223	4.8	26%	29%
poll-4-6-1	15,439	29,506	330.0	4,802 18,869	109.3	69%	66%
poll-5-4-1	21,880	43,760	815.0	6,250 28,130	317.5	71%	61%
grid-2	2,508	4,608	2.8	1,393 2,922	2 1.1	44%	49%
grid-3	10,852	20,872	66.3	6,011 13,240	19.8	45%	67%
grid-4	31,832	62,356	922.5	17,565 39,558	316.5	45%	65%

Conclusions and future work

Conclusions

- We introduced the first reduction technique for MAs abstracting from internal behaviour: confluence reduction
- It preserves divergences and is closed under unions
- We showed how to detect confluence on MAPA specifications and use the representation map approach to reduce on-the-fly
- Case studies show that significant reductions can be obtained

Conclusions and future work

Conclusions

- We introduced the first reduction technique for MAs abstracting from internal behaviour: confluence reduction
- It preserves divergences and is closed under unions
- We showed how to detect confluence on MAPA specifications and use the representation map approach to reduce on-the-fly
- Case studies show that significant reductions can be obtained

Future work

- Develop even more powerful reduction techniques
- Define partial-order reduction as a restriction of confluence