UNIVERSITY OF TWENTE.

Formal Methods & Tools.

Efficient Modelling and Generation of Markov Automata

Mark Timmer March 20, 2012

Joint work with Joost-Pieter Katoen, Jaco van de Pol, and Mariëlle <u>Stoelinga</u>

The overall goal: efficient and expressive modelling

Specifying systems with

- Nondeterminism
- Probability
- Timing

The overall goal: efficient and expressive modelling

Specifying systems with

- Nondeterminism
 Probability

 Probabilistic Automata (PAs)
- Timing

The overall goal: efficient and expressive modelling

Specifying systems with

- Nondeterminism
- Probability
- Timing

Interactive Markov Chains (IMCs)

The overall goal: efficient and expressive modelling

Specifying systems with

- Nondeterminism Probability
- Timing

Markov Automata (MAs)

The overall goal: efficient and expressive modelling

Specifying systems with

- Nondeterminism
 Probability
 Timing
 Markov Automata (MAs)
 - $\begin{array}{c|c} \lambda_1 & \text{Station 1} \\ \hline & \text{poll} \\ \hline & \\ \hline \end{array}$

The overall goal: efficient and expressive modelling

Specifying systems with

- Nondeterminism
 Probability
 Markov Automata (MAs)
- Timing

The overall goal: efficient and expressive modelling

Specifying systems with

Nondeterminism
Probability
Timing
Markov Automata (MAs)

The overall goal: efficient and expressive modelling

Specifying systems with

Nondeterminism
Probability
Timing
Markov Automata (MAs)

The overall goal: efficient and expressive modelling

Specifying systems with

- Timing

The overall goal: efficient and expressive modelling

Specifying systems with

- Nondeterminism
 Probability
 Markov Automata (MAs)
- Timing

The overall goal: efficient and expressive modelling

Specifying systems with

Nondeterminism
Probability
Timing
Markov Automata (MAs)

The overall goal: efficient and expressive modelling

Specifying systems with

- Nondeterminism
 Probability
 Markov Automata (MAs)
- Timing

Observed limitations:

- No easy process-algebraic modelling language with data
- Susceptible to the state space explosion problem

Combating the state space explosion

Combating the state space explosion

Optimised instantiation

- Dead variable reduction
- Confluence reduction

Earlier approach in the PA context

Current approach: extending and reusing

 $PA \rightarrow MA$

Current approach: extending and reusing

Current approach: extending and reusing

Current approach: extending and reusing

Encoding and decoding Reductions Case study Conclusions

Current approach: extending and reusing

```
PA
             MA
        \rightarrow MAPA
prCRL
                       (Markov Automata Process Algebra)
I PPE
             MI PPE
                       (Markovian LPPE)
```


 Bisimulation-preserving transformations on prCRL do not necessarily preserve bisimulation on MAPA!

Strong bisimulation for Markov automata

Conclusions

Strong bisimulation for Markov automata

Strong bisimulation for Markov automata

(If a state enables a τ -transition, all rates are ignored.)

A Encoding and decoding Reductions Case study Conclusions

Contents

Introduction

- Introduction
- 2 A process algebra with data for MAs: MAPA
- 3 Encoding and decoding
- 4 Reductions
- Case study
- 6 Conclusions and Future Work

Specification language MAPA:

- Based on prCRL: data and probabilistic choice
- Additional feature: Markovian rates
- Semantics defined in terms of Markov automata
- Minimal set of operators to facilitate formal manipulation
- Syntactic sugar easily definable

A process algebra with data for MAs: MAPA

Specification language MAPA:

- Based on prCRL: data and probabilistic choice
- Additional feature: Markovian rates
- Semantics defined in terms of Markov automata
- Minimal set of operators to facilitate formal manipulation
- Syntactic sugar easily definable

The grammar of MAPA

Process terms in MAPA are obtained by the following grammar:

$$p ::= Y(t) \mid c \Rightarrow p \mid p+p \mid \sum_{x:D} p \mid a(t) \sum_{x:D} f : p \mid (\lambda(t)) \cdot p$$

Encoding and decoding Reductions

An example specification

MAPA

Conclusions

Encoding and decoding Reductions

An example specification

MAPA

Conclusions

An example specification

- There are 10 types of jobs
- The type of job that arrives is chosen nondeterministically
- Service time depends on job type (hence, we need queues)

An example specification

- There are 10 types of jobs
- The type of job that arrives is chosen nondeterministically
- Service time depends on job type (hence, we need queues)

The specification of the stations:

```
type Jobs = \{1, ..., 10\}
Station(i: \{1,2\}, q: Queue)
    = \mathsf{notFull}(q) \Rightarrow (2i) \cdot \sum_{i: lobs} \mathit{arrive}(j) \cdot \mathit{Station}(i, \mathsf{enqueue}(q, j))
```

An example specification

- There are 10 types of jobs
- The type of job that arrives is chosen nondeterministically
- Service time depends on job type (hence, we need queues)

The specification of the stations:

```
type Jobs = \{1, ..., 10\}
Station(i: \{1,2\}, q: Queue)
    = \mathsf{notFull}(q) \Rightarrow (2i) \cdot \sum_{i: lobs} \mathit{arrive}(j) \cdot \mathit{Station}(i, \mathsf{enqueue}(q, j))
    + notEmpty(q) \Rightarrow deliver(i, head(q)) \sum_{i=1}^{n} i : i = 1 \Rightarrow Station(i, q)
                                                            i \in \{1,9\} + i = 9 \Rightarrow Station(i, tail(q))
```

MAPA Encoding and decoding

ACTIONPREFIX
$$\frac{-}{a \cdot p \xrightarrow{a} p}$$

ACTIONPREFIX
$$\frac{-}{a \cdot p \xrightarrow{a} p}$$

$$X = a \cdot b \cdot c \cdot X$$

ACTIONPREFIX
$$\frac{-}{a \cdot p \xrightarrow{a} p}$$

$$X = a \cdot b \cdot c \cdot X$$

ACTIONPREFIX
$$\frac{-}{a \cdot p \xrightarrow{a} p}$$

SUMLEFT
$$\frac{p \xrightarrow{a} p'}{p+q \xrightarrow{a} p'}$$

$$X = a \cdot b \cdot c \cdot X$$

ACTIONPREFIX
$$\frac{-}{a \cdot p \xrightarrow{a} p}$$

SUMLEFT
$$\frac{p \xrightarrow{a} p'}{p+q \xrightarrow{a} p'}$$

$$X = a \cdot b \cdot c \cdot X$$

$$X = a \cdot b \cdot X + c \cdot X$$

ACTIONPREFIX
$$\frac{-}{a \cdot p \xrightarrow{a} p}$$

SUMLEFT
$$\frac{p \xrightarrow{a} p'}{p+q \xrightarrow{a} p'}$$

Case study

$$X = a \cdot b \cdot c \cdot X$$

$$X = a \cdot b \cdot X + c \cdot X$$

Reductions

MarkovPrefix
$$\xrightarrow{} (\lambda) \cdot p \xrightarrow{\lambda} p$$

SUMLEFT
$$\frac{p \xrightarrow{a} p'}{p+q \xrightarrow{a} p'}$$

MarkovPrefix
$$\frac{-}{(\lambda) \cdot p \xrightarrow{\lambda} p}$$

SUMLEFT
$$\frac{p \xrightarrow{a} p'}{p+q \xrightarrow{a} p'}$$

$$X = (3) \cdot (5) \cdot (2) \cdot X$$

MarkovPrefix
$$\frac{-}{(\lambda) \cdot p \xrightarrow{\lambda} p}$$

SUMLEFT
$$\frac{p \xrightarrow{a} p'}{p+q \xrightarrow{a} p'}$$

$$X = (3) \cdot (5) \cdot (2) \cdot X$$

MarkovPrefix
$$\frac{-}{(\lambda) \cdot p \xrightarrow{\lambda} p}$$

SUMLEFT
$$\frac{p \xrightarrow{a} p'}{p+q \xrightarrow{a} p'}$$

$$X = (3) \cdot (5) \cdot (2) \cdot X$$

$$X = (3) \cdot (5) \cdot X + c \cdot X$$

MarkovPrefix
$$\frac{-}{(\lambda) \cdot p \xrightarrow{\lambda} p}$$

SUMLEFT
$$\frac{p \xrightarrow{a} p'}{p+q \xrightarrow{a} p'}$$

Case study

$$X = (3) \cdot (5) \cdot (2) \cdot X$$

$$X = (3) \cdot (5) \cdot X + c \cdot X$$

MarkovPrefix
$$\frac{-}{(\lambda) \cdot p \xrightarrow{\lambda} p}$$

SUMLEFT
$$\frac{p \xrightarrow{a} p'}{p+q \xrightarrow{a} p'}$$

MarkovPrefix
$$\frac{-}{(\lambda) \cdot p \xrightarrow{\lambda} p}$$

SUMLEFT
$$\frac{p \xrightarrow{a} p'}{p+q \xrightarrow{a} p'}$$

$$X = (3) \cdot (5) \cdot X + (3) \cdot (5) \cdot X$$

MarkovPrefix
$$\frac{-}{(\lambda) \cdot p \xrightarrow{\lambda} p}$$

SUMLEFT
$$\frac{p \xrightarrow{a} p'}{p+q \xrightarrow{a} p'}$$

Case study

$$X = (3) \cdot (5) \cdot X + (3) \cdot (5) \cdot X$$

This is not right!

MarkovPrefix
$$\frac{-}{(\lambda) \cdot p \xrightarrow{\lambda} p}$$

SUMLEFT
$$\frac{p \xrightarrow{a} p'}{p+q \xrightarrow{a} p'}$$

$$X = (3) \cdot (5) \cdot X + (3) \cdot (5) \cdot X$$

This is not right!

As a solution, we look at derivations:

$$\text{MarkovPrefix} \; \frac{-}{(\lambda) \cdot p \; \xrightarrow{\lambda}_{\text{MP}} \; p} \; \; \text{SumLeft} \; \frac{p \; \xrightarrow{a}_{\text{D}} \; p'}{p + q \; \xrightarrow{a}_{\text{SL+D}} \; p'}$$

$$X = (3) \cdot (5) \cdot X + (3) \cdot (5) \cdot X$$

This is not right!

As a solution, we look at derivations:

MarkovPrefix
$$\frac{-}{(\lambda) \cdot p \xrightarrow{\lambda}_{\text{MP}} p}$$
 SumLeft $\frac{p \xrightarrow{a}_{\text{D}} p'}{p + q \xrightarrow{a}_{\text{SL+D}} p'}$

$$X = (3) \cdot (5) \cdot X + (3) \cdot (5) \cdot X$$

This is not right!

As a solution, we look at derivations:

$$X \xrightarrow{3}_{\langle SL,MP \rangle} (5) \cdot X$$
$$X \xrightarrow{3}_{\langle SR,MP \rangle} (5) \cdot X$$

Hence, the total rate from X to $(5) \cdot X$ is 3 + 3 = 6.

Case study

MarkovPrefix
$$\frac{-}{(\lambda) \cdot p \xrightarrow{\lambda}_{\mathrm{MP}} p}$$
 SumLeft $\frac{p \xrightarrow{a}_{\mathrm{D}} p'}{p + q \xrightarrow{a}_{\mathrm{SL+D}} p'}$

$$X = (3) \cdot (5) \cdot X + (3) \cdot (5) \cdot X$$

This is not right!

As a solution, we look at derivations:

$$X \xrightarrow{3} \langle SL, MP \rangle$$
 (5) · X

$$X \xrightarrow{3}_{\langle SR, MP \rangle} (5) \cdot X$$

Hence, the total rate from X to $(5) \cdot X$ is 3 + 3 = 6.

MLPPEs

We defined a special format for MAPA, the MLPPE:

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

MLPPEs

We defined a special format for MAPA, the MLPPE:

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Advantages of using MLPPEs instead of MAPA specifications:

- Easy state space generation
- Straight-forward parallel composition
- Symbolic optimisations enabled at the language level

Encoding and decoding Reductions

Encoding into prCRL

Conclusions

duction MAPA Encoding and decoding Reductions Case study Conclusions

Encoding into prCRL

duction MAPA Encoding and decoding Reductions Case study Conclusions

Encoding into prCRL

roduction MAPA Encoding and decoding Reductions Case study Conclusions

Encoding into prCRL

duction MAPA **Encoding and decoding** Reductions Case study Conclusions

Encoding into prCRL

Basic idea: encode a rate λ as action rate(λ).

Basic idea: encode a rate λ as action rate(λ).

Problem:

Basic idea: encode a rate λ as action rate(λ).

Problem:

$$\lambda \cdot p + \lambda \cdot p$$

Basic idea: encode a rate λ as action rate(λ).

Problem:

$$\lambda \cdot p + \lambda \cdot p \Rightarrow \mathsf{rate}(\lambda) \cdot p + \mathsf{rate}(\lambda) \cdot p$$

Basic idea: encode a rate λ as action rate(λ).

Problem:

$$\lambda \cdot p + \lambda \cdot p \Rightarrow \mathsf{rate}(\lambda) \cdot p + \mathsf{rate}(\lambda) \cdot p$$
 \approx_{PA}
 $\mathsf{rate}(\lambda) \cdot p$

Basic idea: encode a rate λ as action rate(λ).

Problem:

$$\lambda \cdot p + \lambda \cdot p \Rightarrow \mathsf{rate}(\lambda) \cdot p + \mathsf{rate}(\lambda) \cdot p$$
 \approx_{PA}
 $\lambda \cdot p \iff \mathsf{rate}(\lambda) \cdot p$

Basic idea: encode a rate λ as action rate(λ).

Problem:

$$\lambda \cdot p + \lambda \cdot p \Rightarrow \mathsf{rate}(\lambda) \cdot p + \mathsf{rate}(\lambda) \cdot p$$
 $\not\approx_{\mathsf{MA}} \qquad \approx_{\mathsf{PA}}$
 $\lambda \cdot p \quad \Leftarrow \quad \mathsf{rate}(\lambda) \cdot p$

ction MAPA **Encoding and decoding** Reductions Case study Conclusions

Encoding into prCRL

Possible solution: encode a rate λ as action rate_i(λ).

Possible solution: encode a rate λ as action rate_i(λ).

Problem:

Even isomorphic prCRL specifications might yield different MLPPEs.

Case study

Conclusions

Possible solution: encode a rate λ as action rate_i(λ).

Problem:

Even isomorphic prCRL specifications might yield different MLPPEs.

$$rate_1(\lambda) \cdot X \equiv_{PA} rate_1(\lambda) \cdot X + rate_1(\lambda) \cdot X$$

Possible solution: encode a rate λ as action rate_i(λ).

Problem:

Even isomorphic prCRL specifications might yield different MLPPEs.

$$\mathsf{rate}_1(\lambda) \cdot X \equiv_{\mathsf{PA}} \mathsf{rate}_1(\lambda) \cdot X + \mathsf{rate}_1(\lambda) \cdot X$$

Stronger equivalence on prCRL specifications needed!

Encoding and decoding Reductions Case s

Derivation-preserving bisimulation

Two prCRL terms are derivation-preserving bisimulation if

• There is a strong bisimulation relation R containing them

Conclusions

Two prCRL terms are derivation-preserving bisimulation if

- There is a strong bisimulation relation R containing them
- Every bisimilar pair (p, p') has the same number of rate (λ) derivations to every equivalence class $[r]_R$.

Two prCRL terms are derivation-preserving bisimulation if

- There is a strong bisimulation relation *R* containing them
- Every bisimilar pair (p, p') has the same number of rate (λ) derivations to every equivalence class $[r]_R$.

Two prCRL terms are derivation-preserving bisimulation if

- There is a strong bisimulation relation *R* containing them
- Every bisimilar pair (p, p') has the same number of rate (λ) derivations to every equivalence class $[r]_R$.

 $pprox_{\sf dp}$

Two prCRL terms are derivation-preserving bisimulation if

- There is a strong bisimulation relation R containing them
- Every bisimilar pair (p, p') has the same number of rate (λ) derivations to every equivalence class $[r]_R$.

 $pprox_{\sf dp}$

Proposition

Derivation-preserving bisimulation is a congruence for prCRL.

Derivation-preserving bisimulation: important results

Theorem

Given a derivation-preserving prCRL transformation f,

$$decode(f(encode(M))) \approx M$$

for every MAPA specification M.

Theorem

Given a derivation-preserving prCRL transformation f,

$$decode(f(encode(M))) \approx M$$

for every MAPA specification M.

This enables many techniques from the PA world to be generalised trivially to the MA world!

Derivation-preserving bisimulation: important results

Theorem

Given a derivation-preserving prCRL transformation f,

$$decode(f(encode(M))) \approx M$$

for every MAPA specification M.

This enables many techniques from the PA world to be generalised trivially to the MA world!

Corollary

The linearisation procedure of prCRL can be reused for MAPA.

Existing reduction techniques that preserve derivations:

- Constant elimination
- Expression simplification
- Dead variable reduction

Existing reduction techniques that preserve derivations:

- Constant elimination
- Expression simplification
- Dead variable reduction

$$X(id:Id) = print(id) \cdot X(id)$$

init X(Mark)

$$X = print(Mark) \cdot X$$

init X

Existing reduction techniques that preserve derivations:

- Constant elimination
- Expression simplification
- Dead variable reduction

$$X = (3 = 1 + 2 \lor x > 5) \Rightarrow beep \cdot Y$$

$$X = beep \cdot Y$$

Existing reduction techniques that preserve derivations:

- Constant elimination
- Expression simplification
- Dead variable reduction

- Deduce the control flow of an (M)LPPE
- Examine relevance (liveness) of variables
- Reset dead variables

Implementation of dead variable reduction for prCRL:

```
beforeblioned it Bedet o LPE = [11] = hills = kingdy = kingeny = [12] = hills = kingdy = to exclude the desired and the second desired between the class of the second desired between the class of the second desired desired by the second desired desired
introcelelaments, \pi integer \sim 100 \sim 100 \sim 100 \sim 100 \sim 100 \sim 8000 \sim 800 matrix \sim 800 \sim 800
                       ammod - performent las camender
pormeters - (6. Juny) (personne 1.000 - 1)
volut - or (personne 1.000 personne 1.000 - 1)
volut - or (personne 1.000 personne 1.000 personne de celengris releven de Castinosismolus descues (spe summoder ap) () i de - c'os, vise Cummoder, de) rules)
vasibilition tiles (in the semantir de triangula relevant of starget a) and (architelable) research (potentiale semant () ( ), ((a, tep, carget)) a relevant, of a city, sarget a sarget, on
transformEnt is designed in MM in Bules in Belongeth in Behindelte in Control (Ent.) in Behaviore in DMS transformEnt designed (DMI note part summed) rules belongeth totals due of per referent a UMS assigned (DMI note part summed) rules belongeth totals due of per referent and per summed in the part summed in the pa
Interference accept (an interference) and other descriptions and other class of the control of t
                               ned - transfermentiacos atrasec late rules estengen i initial das crise relevent y (K. Length y - 1) nediment - garren, c, e, es, profilectes, ned)
tersforminations decoper (pp. notes sciency): 1 tritial de s'hy relevon g () = 0 

tersforminations decoper (pp. notes sciency): 1 tritial de s'hy relevon g (x, xx) ) notes (x (px) ) notes (
                               ONE
ONE × (i) = Derimite (Install(N)) = (dro (N)) (i)

relevantion × (dex x as a finite (Install(N)) = (dro (N)) (i)

relevantion × (dex x as a finite (I), v(x)) relevantion (I), v(x)) relevantion (I), v(x), deviated in the description (I) (ii) = v(x), v(x),
                               reformiestissessi dissiper, ligne mules belongete i. Initiasi das chie relevent medi ki old mer – transformiestisses opposet (spe mules belongete i initiasi das chie relevent medi ki
                               modulidates :: Busine -: UM - bilagule -- Bilanus -- Dilikiture -- Dilikiture
modulidates denges (pe bilagula minum initial -- Commiliminal denges (pe initial bilagula minum però (initial) però -- (b. Jagot initial - 1)
       isproviditativitie il Balger - UPC - Intriditate - Mongris - Relevano - Inc. - Intrig - Intrig
Introviditativito despection vitati oriogen interes pere letroto il certang ill vilitargi - nembe
                       methods = (n 1 (4.0) in belongelle, if in party, me(plan (4.0, helsial))(i) release()] As ()
WITTHERS = shouldbrook stronger lase party
mention = combending stronger lase party
should/large in dendpor in 1995 in the in the large state of the state
changed his message consider to a string billions and desegred v
changed his message consider to a finish
principles of feetings in SM in the in Service and SM in the SM in
```

Introduction MAPA Encoding and decoding Reductions Case study Conclusions

Generalising existing reduction techniques

Implementation of dead variable reduction for prCRL:

```
The second secon
```

Implementation of dead variable reduction for MAPA:

 $deadVarRed = decode \circ deadVarRedOld \circ encode$

- Maximal progress reduction
- Summation elimination
- Transition merging

- Maximal progress reduction
- Summation elimination
- Transition merging

$$X = \underline{\tau} \cdot X + (5) \cdot X$$

$$X = \tau \cdot X$$

- Maximal progress reduction
- Summation elimination
- Transition merging

$$X = \sum_{d:\{1,2,3\}} d = 2 \Rightarrow send(d) \cdot X$$

$$Y = \sum_{d:\{1,2,3\}} (5) \cdot Y$$

$$Y = \sum_{i=1}^{n} (5)$$

$$-$$
 send(2). X

$$Y = (15) \cdot Y$$

- Maximal progress reduction
- Summation elimination
- Transition merging

$$X = (5) \cdot \tau(\frac{1}{2} \rightarrow a \cdot X + \frac{1}{2} \rightarrow b \cdot X)$$

$$X = (2.5) \cdot a \cdot X + (2.5) \cdot b \cdot X$$

n MAPA Encoding and decoding Reductions Case study Conclusions

Implementation and Case Study

Implementation in SCOOP:

- Programmed in Haskell
- Stand-alone and web-based interface
- Linearisation, optimisation, state space generation

Implementation and Case Study

Implementation in SCOOP:

- Programmed in Haskell
- Stand-alone and web-based interface
- Linearisation, optimisation, state space generation

	Original				Reduced			
Specification	States	Trans.	MLPPE Size	Time	States	Trans.	MLPPE Size	Time
pollingQueue-5-1	170	256	15 / 335	0.0	170	256	8 / 226	0.0
pollingQueue-25-1	3,330	5,256	15 / 335	0.9	3,330	5,256	8 / 226	0.6
pollingQueue-100-1	50,805	81,006	15 / 335	15.9	50,805	81,006	8 / 226	11.7
pollingQueue-5-2	27,659	47,130	15 / 335	8.1	23,690	43,161	8 / 226	3.7
pollingQueue-5-2'	27,659	47,130	15 / 335	8.1	170	256	5 / 176	0.0
pollingQueue-7-2	454,667	778,266	15 / 335	136.4	389,642	713,241	8 / 226	60.2
pollingQueue-7-2'	454,667	778,266	15 / 335	136.2	306	468	5 / 176	0.0
pollingQueue-3-3	14,322	25,208	15 / 335	5.3	11,122	22,008	8 / 226	1.8
pollingQueue-3-4	79,307	143,490	15 / 335	36.1	57,632	121,815	8 / 226	9.9
pollingQueue-3-5	316,058	581,892	15 / 335	168.9	218,714	484,548	8 / 226	39.5
pollingQueue-3-5'	316,058	581,892	15 / 335	167.7	74	108	5 / 176	0.0

Table: MLPPE and state space reductions using SCOOP.

Case study

Implementation and Case Study

Implementation in SCOOP:

- Programmed in Haskell
- Stand-alone and web-based interface
- Linearisation, optimisation, state space generation

	Original				Reduced			
Specification	States	Trans.	MLPPE Size	Time	States	Trans.	MLPPE Size	Time
pollingQueue-5-1	170	256	15 / 335	0.0	170	256	8 / 226	0.0
pollingQueue-25-1	3,330	5,256	15 / 335	0.9	3,330	5,256	8 / 226	0.6
pollingQueue-100-1	50,805	81,006	15 / 335	15.9	50,805	81,006	8 / 226	11.7
pollingQueue-5-2	27,659	47,130	15 / 335	8.1	23,690	43,161	8 / 226	3.7
pollingQueue-5-2'	27,659	47,130	15 / 335	8.1	170	256	5 / 176	0.0
pollingQueue-7-2	454,667	778,266	15 / 335	136.4	389,642	713,241	8 / 226	60.2
pollingQueue-7-2'	454,667	778,266	15 / 335	136.2	306	468	5 / 176	0.0
pollingQueue-3-3	14,322	25,208	15 / 335	5.3	11,122	22,008	8 / 226	1.8
pollingQueue-3-4	79,307	143,490	15 / 335	36.1	57,632	121,815	8 / 226	9.9
pollingQueue-3-5	316,058	581,892	15 / 335	168.9	218,714	484,548	8 / 226	39.5
pollingQueue-3-5'	316,058	581,892	15 / 335	167.7	74	108	5 / 176	0.0

Table: MLPPE and state space reductions using SCOOP.

Reductions

Implementation and Case Study

Implementation in SCOOP:

- Programmed in Haskell
- Stand-alone and web-based interface
- Linearisation, optimisation, state space generation

	Original				Reduced			
Specification	States	Trans.	MLPPE Size	Time	States	Trans.	MLPPE Size	Time
pollingQueue-5-1	170	256	15 / 335	0.0	170	256	8 / 226	0.0
pollingQueue-25-1	3,330	5,256	15 / 335	0.9	3,330	5,256	8 / 226	0.6
pollingQueue-100-1	50,805	81,006	15 / 335	15.9	50,805	81,006	8 / 226	11.7
pollingQueue-5-2	27,659	47,130	15 / 335	8.1	23,690	43,161	8 / 226	3.7
pollingQueue-5-2'	27,659	47,130	15 / 335	8.1	170	256	5 / 176	0.0
pollingQueue-7-2	454,667	778,266	15 / 335	136.4	389,642	713,241	8 / 226	60.2
pollingQueue-7-2'	454,667	778,266	15 / 335	136.2	306	468	5 / 176	0.0
pollingQueue-3-3	14,322	25,208	15 / 335	5.3	11,122	22,008	8 / 226	1.8
pollingQueue-3-4	79,307	143,490	15 / 335	36.1	57,632	121,815	8 / 226	9.9
pollingQueue-3-5	316,058	581,892	15 / 335	168.9	218,714	484,548	8 / 226	39.5
pollingQueue-3-5'	316,058	581,892	15 / 335	167.7	74	108	5 / 176	0.0

Table: MLPPE and state space reductions using SCOOP.

Conclusions and Future Work

Conclusions:

- We introduced a new process-algebraic framework (MAPA)
 with data for modelling and generating Markov automata
- We introduced the MLPPE for easy state space generation, parallel composition and reduction techniques

Conclusions:

- We introduced a new process-algebraic framework (MAPA)
 with data for modelling and generating Markov automata
- We introduced the MLPPE for easy state space generation, parallel composition and reduction techniques
- We showed an encoding of MAPA into prCRL
- We showed when prCRL techniques can be used safely by encoding, using a novel notion of bisimulation

Case study Conclusions

Conclusions:

- We introduced a new process-algebraic framework (MAPA) with data for modelling and generating Markov automata
- We introduced the MLPPE for easy state space generation, parallel composition and reduction techniques
- We showed an encoding of MAPA into prCRL
- We showed when prCRL techniques can be used safely by encoding, using a novel notion of bisimulation
- All our results apply to LTSs, DTMCs, CTMCs, IMCs and PAs

Conclusions and Future Work

Conclusions:

- We introduced a new process-algebraic framework (MAPA)
 with data for modelling and generating Markov automata
- We introduced the MLPPE for easy state space generation, parallel composition and reduction techniques
- We showed an encoding of MAPA into prCRL
- We showed when prCRL techniques can be used safely by encoding, using a novel notion of bisimulation
- All our results apply to LTSs, DTMCs, CTMCs, IMCs and PAs

Future Work:

- Generalise confluence reduction to MAs and MAPA
- Develop model checking techniques for MAs