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Introduction R 1d

The overall goal: efficient and expressive modelling
Specifying systems with
o Nondeterminism <«———

e Probability <~—— Markov Automata (MAs)

e Timing -~

Observed limitations:
@ No easy process-algebraic modelling language with data

@ Susceptible to the state space explosion problem
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Combating the state space explosion

Specification

Instantiation

Optimised instantiation

- Dead variable reduction

- Confluence reduction
State space

Minimisation (optimisation)

State space
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Earlier approach in the PA context

Probabilistic specification (prCRL)

Linearisation

A Optimisation
Linear Probabilistic Process Equation (LPPE) - Dead variables
- Confluence

Instantiation

Y

State space (PA)

Model checking
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Introduction

PA - MA
prCRL — MAPA  (Markov Automata Process Algebra)
LPPE — MLPPE (Markovian LPPE)

1
~! linearise
1
decode
reduce MLPPE [ m:D reduce
instantiate

@ Bisimulation-preserving transformations on prCRL do not
necessarily preserve bisimulation on MAPA!
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A process algebra w date; for MAs: MAPA

Specification language MAPA:
@ Based on prCRL: data and probabilistic choice
@ Additional feature: Markovian rates
@ Semantics defined in terms of Markov automata
@ Minimal set of operators to facilitate formal manipulation

@ Syntactic sugar easily definable

The grammar of MAPA

Process terms in MAPA are obtained by the following grammar:

pi=Y®) | c=p | p+p | Y p | at) fip| (AE)-p
x:D x:D
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@ The type of job that arrives is

poll .. .
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@ Service time depends on job
type (hence, we need queues)
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. @ There are 10 types of jobs

]

poll

@ The type of job that arrives is

poll .. .
chosen nondeterministically

@ Service time depends on job
type (hence, we need queues)

The specification of the stations:

type Jobs = {1,...,10}
Station(i : {1,2}, q : Queue)
=notFull(q) = (2i). >, ), arrive(j).Station(i, enqueue(q, j))

+ notEmpty(q) = deliver(i, head(q)) z & i =1= Station(i, q)
€{19} 4 j =9 = Station(i, tail(q))
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MLPPEs

We defined a special format for MAPA, the MLPPE:

X(g:G)=>_ > ¢ =ailb)» fi:X(n)
e; E;

i€l d;:D;

+ 3 g = (M(by) - X(ny)

jEJ dJDJ

Advantages of using MLPPEs instead of MAPA specifications:
@ Easy state space generation
@ Straight-forward parallel composition

e Symbolic optimisations enabled at the language level
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Encoding and decoding

Encodlng into prCRL

encode

| MAPA I
1
::: linearise
1
decod
reduce ( | MLPPE I= ecoce mgreduce

Possible solution: encode a rate A as action rate;(\).

Problem:

Even isomorphic prCRL specifications might yield different
MLPPEs.

rate;(\) - X =pa rate;(A) - X +rate;(A) - X

Stronger equivalence on prCRL specifications needed!
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Derivation-preserving bisimulation

Two prCRL terms are derivation-preserving bisimulation if

@ There is a strong bisimulation relation R containing them
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Two prCRL terms are derivation-preserving bisimulation if
@ There is a strong bisimulation relation R containing them

@ Every bisimilar pair (p, p’) has the same number of rate(\)
derivations to every equivalence class [r]g.

rate(\) - a- X + rate(A) - a- X m

rate(A) (2x) #dp a rate(A) (1x)
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Two prCRL terms are derivation-preserving bisimulation if
@ There is a strong bisimulation relation R containing them

e Every bisimilar pair (p, p’) has the same number of rate()\)
derivations to every equivalence class [r]g.

rate(\) - a- X + rate(\) - a- X @) a- X +rate()) - (a- X+a X)

(1x) rate(A rate(\) (1x)
rate(A) (2x) ~q
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Encoding and decoding

Derivation-preserving bisimulation

Two prCRL terms are derivation-preserving bisimulation if
@ There is a strong bisimulation relation R containing them

e Every bisimilar pair (p, p’) has the same number of rate()\)
derivations to every equivalence class [r]g.

rate(\) -a- X + rate(\) -a- X @) a- X +rate()) - (a- X+ a- X)

(1x) rate(A rate(\) (1x)
rate(A) (2x) g

Proposition

Derivation-preserving bisimulation is a congruence for prCRL.
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Derivation-preserving bisimulation: important results

Given a derivation-preserving prCRL transformation f,
decode(f(encode(M))) ~ M

for every MAPA specification M.

UNIVERSITY OF TWENTE. Efficient Modelling and Generation of Markov Automata March 20, 2012 17 / 22



Cor

Encoding and decoding Reductions C id

Derivation-preserving bisimulation: important results

Given a derivation-preserving prCRL transformation f,
decode(f(encode(M))) ~ M

for every MAPA specification M.

This enables many techniques from the PA world to be generalised
trivially to the MA world!
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Encoding and decoding Reductions C 1

Derivation-preserving bisimulation: important results

Given a derivation-preserving prCRL transformation f,
decode(f(encode(M))) ~ M

for every MAPA specification M.

This enables many techniques from the PA world to be generalised
trivially to the MA world!

The linearisation procedure of prCRL can be reused for MAPA.

17 / 22
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Generalising existing reduction techniques

Existing reduction techniques that preserve derivations:
@ Constant elimination
@ Expression simplification

@ Dead variable reduction
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Reductions

Generalising existing reduction techniques

Existing reduction techniques that preserve derivations:
@ Constant elimination
@ Expression simplification

@ Dead variable reduction

X(id : Id) = print(id) - X(id) X = print(Mark) - X

init X(Mark) init X
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Introduction MAPA Encoding and ¢ ; Reductions

Generalising existing reduction techniques

Existing reduction techniques that preserve derivations:
@ Constant elimination
@ Expression simplification

@ Dead variable reduction

X=B3=1+2Vx>5)= beep-Y X = beep- Y
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| on MAPA E Reductions

Generalising existing reduction techniques

Existing reduction techniques that preserve derivations:
@ Constant elimination
@ Expression simplification

@ Dead variable reduction

Deduce the control flow of an (M)LPPE

Examine relevance (liveness) of variables

Reset dead variables
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Generalising existing reduction techniques

Implementation of dead variable reduction for prCRL:
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Generalising existing reduction techniques

Implementation of dead variable reduction for prCRL:

Implementation of dead variable reduction for MAPA:

| deadVarRed = decode o deadVarRedOld o encode |
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Novel reduction techniques

New reduction techniques for MAPA:
@ Maximal progress reduction
@ Summation elimination

@ Transition merging
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Introduction MAPA ing an 4 Reductions

Novel reduction techniques

New reduction techniques for MAPA:
@ Maximal progress reduction
@ Summation elimination

@ Transition merging

T-X

x
Il

X=7-X+(5)-X —
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Introduction MAPA ing an Reductions

Novel reduction techniques

New reduction techniques for MAPA:
@ Maximal progress reduction
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Implementation and Case Study

Implementation in SCOOP:

@ Programmed in Haskell
@ Stand-alone and web-based interface

@ Linearisation, optimisation, state space generation

Original Reduced
Specification States Trans. MLPPE Size  Time States Trans. MLPPE Size  Time
pollingQueue-5-1 170 256 15 / 335 0.0 170 256 8 /226 0.0
pollingQueue-25-1 3,330 5,256 15 / 335 0.9 3,330 5,256 8 /226 0.6
pollingQueue-100-1 50,805 81,006 15 / 335 15.9 50,805 81,006 8 /226 11.7
pollingQueue-5-2 27,659 47,130 15 / 335 8.1 23,690 43,161 8 /226 3.7
pollingQueue-5-2° 27,659 47,130 15 / 335 8.1 170 256 5/ 176 0.0
pollingQueue-7-2 454,667 778,266 15 / 335 136.4 389,642 713,241 8 /226 60.2
pollingQueue-7-2° 454,667 778,266 15 / 335 136.2 306 468 5/ 176 0.0
pollingQueue-3-3 14,322 25,208 15 / 335 5.3 11,122 22,008 8 /226 1.8
pollingQueue-3-4 79,307 143,490 15 / 335 36.1 57,632 121,815 8 /226 9.9
pollingQueue-3-5 316,058 581,892 15 / 335 168.9 218,714 484,548 8 /226 39.5
pollingQueue-3-5° 316,058 581,892 15 /335  167.7 74 108 5/ 176 0.0

Table: MLPPE and state space reductions using SCOOP.
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with data for modelling and generating Markov automata

@ We introduced the MLPPE for easy state space generation,
parallel composition and reduction techniques
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with data for modelling and generating Markov automata

@ We introduced the MLPPE for easy state space generation,
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@ We showed an encoding of MAPA into prCRL

@ We showed when prCRL techniques can be used safely by
encoding, using a novel notion of bisimulation

@ All our results apply to LTSs, DTMCs, CTMCs, IMCs and PAs
Future Work:

@ Generalise confluence reduction to MAs and MAPA

@ Develop model checking techniques for MAs
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