UNIVERSITY OF TWENTE. Formal Methods & Tools. # Efficient Modelling and Generation of Markov Automata Mark Timmer March 20, 2012 Joint work with Joost-Pieter Katoen, Jaco van de Pol, and Mariëlle <u>Stoelinga</u> ### The overall goal: efficient and expressive modelling #### Specifying systems with - Nondeterminism - Probability - Timing ### The overall goal: efficient and expressive modelling #### Specifying systems with - Nondeterminism Probability Probabilistic Automata (PAs) - Timing ### The overall goal: efficient and expressive modelling #### Specifying systems with - Nondeterminism - Probability - Timing Interactive Markov Chains (IMCs) ### The overall goal: efficient and expressive modelling #### Specifying systems with - Nondeterminism Probability - Timing Markov Automata (MAs) ### The overall goal: efficient and expressive modelling #### Specifying systems with - Nondeterminism Probability Timing Markov Automata (MAs) - $\begin{array}{c|c} \lambda_1 & \text{Station 1} \\ \hline & \text{poll} \\ \hline & \\ \hline \end{array}$ ### The overall goal: efficient and expressive modelling #### Specifying systems with - Nondeterminism Probability Markov Automata (MAs) - Timing ### The overall goal: efficient and expressive modelling #### Specifying systems with Nondeterminism Probability Timing Markov Automata (MAs) ### The overall goal: efficient and expressive modelling #### Specifying systems with Nondeterminism Probability Timing Markov Automata (MAs) #### The overall goal: efficient and expressive modelling #### Specifying systems with - Timing ### The overall goal: efficient and expressive modelling #### Specifying systems with - Nondeterminism Probability Markov Automata (MAs) - Timing ### The overall goal: efficient and expressive modelling #### Specifying systems with Nondeterminism Probability Timing Markov Automata (MAs) ### The overall goal: efficient and expressive modelling #### Specifying systems with - Nondeterminism Probability Markov Automata (MAs) - Timing #### Observed limitations: - No easy process-algebraic modelling language with data - Susceptible to the state space explosion problem ### Combating the state space explosion ### Combating the state space explosion #### Optimised instantiation - Dead variable reduction - Confluence reduction ### Earlier approach in the PA context # Current approach: extending and reusing $PA \rightarrow MA$ ## Current approach: extending and reusing ## Current approach: extending and reusing ### Current approach: extending and reusing Encoding and decoding Reductions Case study Conclusions ### Current approach: extending and reusing ``` PA MA \rightarrow MAPA prCRL (Markov Automata Process Algebra) I PPE MI PPE (Markovian LPPE) ``` Bisimulation-preserving transformations on prCRL do not necessarily preserve bisimulation on MAPA! ### Strong bisimulation for Markov automata Conclusions #### Strong bisimulation for Markov automata ### Strong bisimulation for Markov automata (If a state enables a τ -transition, all rates are ignored.) A Encoding and decoding Reductions Case study Conclusions #### Contents Introduction - Introduction - 2 A process algebra with data for MAs: MAPA - 3 Encoding and decoding - 4 Reductions - Case study - 6 Conclusions and Future Work #### Specification language MAPA: - Based on prCRL: data and probabilistic choice - Additional feature: Markovian rates - Semantics defined in terms of Markov automata - Minimal set of operators to facilitate formal manipulation - Syntactic sugar easily definable #### A process algebra with data for MAs: MAPA #### Specification language MAPA: - Based on prCRL: data and probabilistic choice - Additional feature: Markovian rates - Semantics defined in terms of Markov automata - Minimal set of operators to facilitate formal manipulation - Syntactic sugar easily definable #### The grammar of MAPA Process terms in MAPA are obtained by the following grammar: $$p ::= Y(t) \mid c \Rightarrow p \mid p+p \mid \sum_{x:D} p \mid a(t) \sum_{x:D} f : p \mid (\lambda(t)) \cdot p$$ Encoding and decoding Reductions ### An example specification MAPA Conclusions Encoding and decoding Reductions ### An example specification MAPA Conclusions #### An example specification - There are 10 types of jobs - The type of job that arrives is chosen nondeterministically - Service time depends on job type (hence, we need queues) #### An example specification - There are 10 types of jobs - The type of job that arrives is chosen nondeterministically - Service time depends on job type (hence, we need queues) #### The specification of the stations: ``` type Jobs = \{1, ..., 10\} Station(i: \{1,2\}, q: Queue) = \mathsf{notFull}(q) \Rightarrow (2i) \cdot \sum_{i: lobs} \mathit{arrive}(j) \cdot \mathit{Station}(i, \mathsf{enqueue}(q, j)) ``` #### An example specification - There are 10 types of jobs - The type of job that arrives is chosen nondeterministically - Service time depends on job type (hence, we need queues) #### The specification of the stations: ``` type Jobs = \{1, ..., 10\} Station(i: \{1,2\}, q: Queue) = \mathsf{notFull}(q) \Rightarrow (2i) \cdot \sum_{i: lobs} \mathit{arrive}(j) \cdot \mathit{Station}(i, \mathsf{enqueue}(q, j)) + notEmpty(q) \Rightarrow deliver(i, head(q)) \sum_{i=1}^{n} i : i = 1 \Rightarrow Station(i, q) i \in \{1,9\} + i = 9 \Rightarrow Station(i, tail(q)) ``` MAPA Encoding and decoding ACTIONPREFIX $$\frac{-}{a \cdot p \xrightarrow{a} p}$$ ACTIONPREFIX $$\frac{-}{a \cdot p \xrightarrow{a} p}$$ $$X = a \cdot b \cdot c \cdot X$$ ACTIONPREFIX $$\frac{-}{a \cdot p \xrightarrow{a} p}$$ $$X = a \cdot b \cdot c \cdot X$$ ACTIONPREFIX $$\frac{-}{a \cdot p \xrightarrow{a} p}$$ SUMLEFT $$\frac{p \xrightarrow{a} p'}{p+q \xrightarrow{a} p'}$$ $$X = a \cdot b \cdot c \cdot X$$ ACTIONPREFIX $$\frac{-}{a \cdot p \xrightarrow{a} p}$$ SUMLEFT $$\frac{p \xrightarrow{a} p'}{p+q \xrightarrow{a} p'}$$ $$X = a \cdot b \cdot c \cdot X$$ $$X = a \cdot b \cdot X + c \cdot X$$ ACTIONPREFIX $$\frac{-}{a \cdot p \xrightarrow{a} p}$$ SUMLEFT $$\frac{p \xrightarrow{a} p'}{p+q \xrightarrow{a} p'}$$ Case study $$X = a \cdot b \cdot c \cdot X$$ $$X = a \cdot b \cdot X + c \cdot X$$ Reductions MarkovPrefix $$\xrightarrow{} (\lambda) \cdot p \xrightarrow{\lambda} p$$ SUMLEFT $$\frac{p \xrightarrow{a} p'}{p+q \xrightarrow{a} p'}$$ MarkovPrefix $$\frac{-}{(\lambda) \cdot p \xrightarrow{\lambda} p}$$ SUMLEFT $$\frac{p \xrightarrow{a} p'}{p+q \xrightarrow{a} p'}$$ $$X = (3) \cdot (5) \cdot (2) \cdot X$$ MarkovPrefix $$\frac{-}{(\lambda) \cdot p \xrightarrow{\lambda} p}$$ SUMLEFT $$\frac{p \xrightarrow{a} p'}{p+q \xrightarrow{a} p'}$$ $$X = (3) \cdot (5) \cdot (2) \cdot X$$ MarkovPrefix $$\frac{-}{(\lambda) \cdot p \xrightarrow{\lambda} p}$$ SUMLEFT $$\frac{p \xrightarrow{a} p'}{p+q \xrightarrow{a} p'}$$ $$X = (3) \cdot (5) \cdot (2) \cdot X$$ $$X = (3) \cdot (5) \cdot X + c \cdot X$$ MarkovPrefix $$\frac{-}{(\lambda) \cdot p \xrightarrow{\lambda} p}$$ SUMLEFT $$\frac{p \xrightarrow{a} p'}{p+q \xrightarrow{a} p'}$$ Case study $$X = (3) \cdot (5) \cdot (2) \cdot X$$ $$X = (3) \cdot (5) \cdot X + c \cdot X$$ MarkovPrefix $$\frac{-}{(\lambda) \cdot p \xrightarrow{\lambda} p}$$ SUMLEFT $$\frac{p \xrightarrow{a} p'}{p+q \xrightarrow{a} p'}$$ MarkovPrefix $$\frac{-}{(\lambda) \cdot p \xrightarrow{\lambda} p}$$ SUMLEFT $$\frac{p \xrightarrow{a} p'}{p+q \xrightarrow{a} p'}$$ $$X = (3) \cdot (5) \cdot X + (3) \cdot (5) \cdot X$$ MarkovPrefix $$\frac{-}{(\lambda) \cdot p \xrightarrow{\lambda} p}$$ SUMLEFT $$\frac{p \xrightarrow{a} p'}{p+q \xrightarrow{a} p'}$$ Case study $$X = (3) \cdot (5) \cdot X + (3) \cdot (5) \cdot X$$ This is not right! MarkovPrefix $$\frac{-}{(\lambda) \cdot p \xrightarrow{\lambda} p}$$ SUMLEFT $$\frac{p \xrightarrow{a} p'}{p+q \xrightarrow{a} p'}$$ $$X = (3) \cdot (5) \cdot X + (3) \cdot (5) \cdot X$$ This is not right! As a solution, we look at derivations: $$\text{MarkovPrefix} \; \frac{-}{(\lambda) \cdot p \; \xrightarrow{\lambda}_{\text{MP}} \; p} \; \; \text{SumLeft} \; \frac{p \; \xrightarrow{a}_{\text{D}} \; p'}{p + q \; \xrightarrow{a}_{\text{SL+D}} \; p'}$$ $$X = (3) \cdot (5) \cdot X + (3) \cdot (5) \cdot X$$ This is not right! As a solution, we look at derivations: MarkovPrefix $$\frac{-}{(\lambda) \cdot p \xrightarrow{\lambda}_{\text{MP}} p}$$ SumLeft $\frac{p \xrightarrow{a}_{\text{D}} p'}{p + q \xrightarrow{a}_{\text{SL+D}} p'}$ $$X = (3) \cdot (5) \cdot X + (3) \cdot (5) \cdot X$$ This is not right! As a solution, we look at derivations: $$X \xrightarrow{3}_{\langle SL,MP \rangle} (5) \cdot X$$ $$X \xrightarrow{3}_{\langle SR,MP \rangle} (5) \cdot X$$ Hence, the total rate from X to $(5) \cdot X$ is 3 + 3 = 6. Case study MarkovPrefix $$\frac{-}{(\lambda) \cdot p \xrightarrow{\lambda}_{\mathrm{MP}} p}$$ SumLeft $\frac{p \xrightarrow{a}_{\mathrm{D}} p'}{p + q \xrightarrow{a}_{\mathrm{SL+D}} p'}$ $$X = (3) \cdot (5) \cdot X + (3) \cdot (5) \cdot X$$ This is not right! As a solution, we look at derivations: $$X \xrightarrow{3} \langle SL, MP \rangle$$ (5) · X $$X \xrightarrow{3}_{\langle SR, MP \rangle} (5) \cdot X$$ Hence, the total rate from X to $(5) \cdot X$ is 3 + 3 = 6. #### **MLPPEs** We defined a special format for MAPA, the MLPPE: $$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$ #### **MLPPEs** We defined a special format for MAPA, the MLPPE: $$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$ Advantages of using MLPPEs instead of MAPA specifications: - Easy state space generation - Straight-forward parallel composition - Symbolic optimisations enabled at the language level Encoding and decoding Reductions # Encoding into prCRL Conclusions duction MAPA Encoding and decoding Reductions Case study Conclusions # Encoding into prCRL duction MAPA Encoding and decoding Reductions Case study Conclusions # Encoding into prCRL roduction MAPA Encoding and decoding Reductions Case study Conclusions ### Encoding into prCRL duction MAPA **Encoding and decoding** Reductions Case study Conclusions # Encoding into prCRL Basic idea: encode a rate λ as action rate(λ). Basic idea: encode a rate λ as action rate(λ). #### Problem: Basic idea: encode a rate λ as action rate(λ). #### Problem: $$\lambda \cdot p + \lambda \cdot p$$ Basic idea: encode a rate λ as action rate(λ). #### Problem: $$\lambda \cdot p + \lambda \cdot p \Rightarrow \mathsf{rate}(\lambda) \cdot p + \mathsf{rate}(\lambda) \cdot p$$ Basic idea: encode a rate λ as action rate(λ). #### Problem: $$\lambda \cdot p + \lambda \cdot p \Rightarrow \mathsf{rate}(\lambda) \cdot p + \mathsf{rate}(\lambda) \cdot p$$ \approx_{PA} $\mathsf{rate}(\lambda) \cdot p$ Basic idea: encode a rate λ as action rate(λ). #### Problem: $$\lambda \cdot p + \lambda \cdot p \Rightarrow \mathsf{rate}(\lambda) \cdot p + \mathsf{rate}(\lambda) \cdot p$$ \approx_{PA} $\lambda \cdot p \iff \mathsf{rate}(\lambda) \cdot p$ Basic idea: encode a rate λ as action rate(λ). #### Problem: $$\lambda \cdot p + \lambda \cdot p \Rightarrow \mathsf{rate}(\lambda) \cdot p + \mathsf{rate}(\lambda) \cdot p$$ $\not\approx_{\mathsf{MA}} \qquad \approx_{\mathsf{PA}}$ $\lambda \cdot p \quad \Leftarrow \quad \mathsf{rate}(\lambda) \cdot p$ ction MAPA **Encoding and decoding** Reductions Case study Conclusions #### Encoding into prCRL Possible solution: encode a rate λ as action rate_i(λ). Possible solution: encode a rate λ as action rate_i(λ). #### Problem: Even isomorphic prCRL specifications might yield different MLPPEs. Case study Conclusions Possible solution: encode a rate λ as action rate_i(λ). #### Problem: Even isomorphic prCRL specifications might yield different MLPPEs. $$rate_1(\lambda) \cdot X \equiv_{PA} rate_1(\lambda) \cdot X + rate_1(\lambda) \cdot X$$ Possible solution: encode a rate λ as action rate_i(λ). #### Problem: Even isomorphic prCRL specifications might yield different MLPPEs. $$\mathsf{rate}_1(\lambda) \cdot X \equiv_{\mathsf{PA}} \mathsf{rate}_1(\lambda) \cdot X + \mathsf{rate}_1(\lambda) \cdot X$$ Stronger equivalence on prCRL specifications needed! Encoding and decoding Reductions Case s # Derivation-preserving bisimulation Two prCRL terms are derivation-preserving bisimulation if • There is a strong bisimulation relation R containing them Conclusions Two prCRL terms are derivation-preserving bisimulation if - There is a strong bisimulation relation R containing them - Every bisimilar pair (p, p') has the same number of rate (λ) derivations to every equivalence class $[r]_R$. Two prCRL terms are derivation-preserving bisimulation if - There is a strong bisimulation relation *R* containing them - Every bisimilar pair (p, p') has the same number of rate (λ) derivations to every equivalence class $[r]_R$. Two prCRL terms are derivation-preserving bisimulation if - There is a strong bisimulation relation *R* containing them - Every bisimilar pair (p, p') has the same number of rate (λ) derivations to every equivalence class $[r]_R$. $pprox_{\sf dp}$ Two prCRL terms are derivation-preserving bisimulation if - There is a strong bisimulation relation R containing them - Every bisimilar pair (p, p') has the same number of rate (λ) derivations to every equivalence class $[r]_R$. $pprox_{\sf dp}$ #### **Proposition** Derivation-preserving bisimulation is a congruence for prCRL. # Derivation-preserving bisimulation: important results #### Theorem Given a derivation-preserving prCRL transformation f, $$decode(f(encode(M))) \approx M$$ for every MAPA specification M. #### Theorem Given a derivation-preserving prCRL transformation f, $$decode(f(encode(M))) \approx M$$ for every MAPA specification M. This enables many techniques from the PA world to be generalised trivially to the MA world! ## Derivation-preserving bisimulation: important results #### Theorem Given a derivation-preserving prCRL transformation f, $$decode(f(encode(M))) \approx M$$ for every MAPA specification M. This enables many techniques from the PA world to be generalised trivially to the MA world! #### Corollary The linearisation procedure of prCRL can be reused for MAPA. Existing reduction techniques that preserve derivations: - Constant elimination - Expression simplification - Dead variable reduction #### Existing reduction techniques that preserve derivations: - Constant elimination - Expression simplification - Dead variable reduction $$X(id:Id) = print(id) \cdot X(id)$$ init X(Mark) $$X = print(Mark) \cdot X$$ init X Existing reduction techniques that preserve derivations: - Constant elimination - Expression simplification - Dead variable reduction $$X = (3 = 1 + 2 \lor x > 5) \Rightarrow beep \cdot Y$$ $$X = beep \cdot Y$$ Existing reduction techniques that preserve derivations: - Constant elimination - Expression simplification - Dead variable reduction - Deduce the control flow of an (M)LPPE - Examine relevance (liveness) of variables - Reset dead variables ## Implementation of dead variable reduction for prCRL: ``` beforeblioned it Bedet o LPE = [11] = hills = kingdy = kingeny = [12] = hills = kingdy = to exclude the desired and the second desired between the class of the second desired between the class of the second desired desired by the second desired introcelelaments, \pi integer \sim 100 \sim 100 \sim 100 \sim 100 \sim 100 \sim 8000 \sim 800 matrix \sim 800 ammod - performent las camender pormeters - (6. Juny) (personne 1.000 - 1) volut - or (personne 1.000 personne 1.000 - 1) volut - or (personne 1.000 personne 1.000 personne de celengris releven de Castinosismolus descues (spe summoder ap) () i de - c'os, vise Cummoder, de) rules) vasibilition tiles (in the semantir de triangula relevant of starget a) and (architelable) research (potentiale semant () (), ((a, tep, carget)) a relevant, of a city, sarget a sarget, on transformEnt is designed in MM in Bules in Belongeth in Behindelte in Control (Ent.) in Behaviore in DMS transformEnt designed (DMI note part summed) rules belongeth totals due of per referent a UMS assigned (DMI note part summed) rules belongeth totals due of per referent and per summed in the part pa Interference accept (an interference) and other descriptions and other class of the control t ned - transfermentiacos atrasec late rules estengen i initial das crise relevent y (K. Length y - 1) nediment - garren, c, e, es, profilectes, ned) tersforminations decoper (pp. notes sciency): 1 tritial de s'hy relevon g () = 0 tersforminations decoper (pp. notes sciency): 1 tritial de s'hy relevon g (x, xx)) notes (x (px) (ONE ONE × (i) = Derimite (Install(N)) = (dro (N)) (i) relevantion × (dex x as a finite (Install(N)) = (dro (N)) (i) relevantion × (dex x as a finite (I), v(x)) relevantion (I), v(x)) relevantion (I), v(x), deviated in the description (I) (ii) = v(x), reformiestissessi dissiper, ligne mules belongete i. Initiasi das chie relevent medi ki old mer – transformiestisses opposet (spe mules belongete i initiasi das chie relevent medi ki modulidates :: Busine -: UM - bilagule -- Bilanus -- Dilikiture -- Dilikiture modulidates denges (pe bilagula minum initial -- Commiliminal denges (pe initial bilagula minum però (initial) però -- (b. Jagot initial - 1) isproviditativitie il Balger - UPC - Intriditate - Mongris - Relevano - Inc. - Intrig - Intrig Introviditativito despection vitati oriogen interes pere letroto il certang ill vilitargi - nembe methods = (n 1 (4.0) in belongelle, if in party, me(plan (4.0, helsial))(i) release()] As () WITTHERS = shouldbrook stronger lase party mention = combending stronger lase party should/large in dendpor in 1995 in the in the large state of the changed his message consider to a string billions and desegred v changed his message consider to a finish principles of feetings in SM in the in Service and SM in the ``` Introduction MAPA Encoding and decoding Reductions Case study Conclusions # Generalising existing reduction techniques #### Implementation of dead variable reduction for prCRL: ``` The second secon ``` Implementation of dead variable reduction for MAPA: $deadVarRed = decode \circ deadVarRedOld \circ encode$ - Maximal progress reduction - Summation elimination - Transition merging - Maximal progress reduction - Summation elimination - Transition merging $$X = \underline{\tau} \cdot X + (5) \cdot X$$ $$X = \tau \cdot X$$ - Maximal progress reduction - Summation elimination - Transition merging $$X = \sum_{d:\{1,2,3\}} d = 2 \Rightarrow send(d) \cdot X$$ $$Y = \sum_{d:\{1,2,3\}} (5) \cdot Y$$ $$Y = \sum_{i=1}^{n} (5)$$ $$-$$ send(2). X $$Y = (15) \cdot Y$$ - Maximal progress reduction - Summation elimination - Transition merging $$X = (5) \cdot \tau(\frac{1}{2} \rightarrow a \cdot X + \frac{1}{2} \rightarrow b \cdot X)$$ $$X = (2.5) \cdot a \cdot X + (2.5) \cdot b \cdot X$$ n MAPA Encoding and decoding Reductions Case study Conclusions # Implementation and Case Study ## Implementation in SCOOP: - Programmed in Haskell - Stand-alone and web-based interface - Linearisation, optimisation, state space generation # Implementation and Case Study #### Implementation in SCOOP: - Programmed in Haskell - Stand-alone and web-based interface - Linearisation, optimisation, state space generation | | Original | | | | Reduced | | | | |--------------------|----------|---------|------------|-------|---------|---------|------------|------| | Specification | States | Trans. | MLPPE Size | Time | States | Trans. | MLPPE Size | Time | | pollingQueue-5-1 | 170 | 256 | 15 / 335 | 0.0 | 170 | 256 | 8 / 226 | 0.0 | | pollingQueue-25-1 | 3,330 | 5,256 | 15 / 335 | 0.9 | 3,330 | 5,256 | 8 / 226 | 0.6 | | pollingQueue-100-1 | 50,805 | 81,006 | 15 / 335 | 15.9 | 50,805 | 81,006 | 8 / 226 | 11.7 | | pollingQueue-5-2 | 27,659 | 47,130 | 15 / 335 | 8.1 | 23,690 | 43,161 | 8 / 226 | 3.7 | | pollingQueue-5-2' | 27,659 | 47,130 | 15 / 335 | 8.1 | 170 | 256 | 5 / 176 | 0.0 | | pollingQueue-7-2 | 454,667 | 778,266 | 15 / 335 | 136.4 | 389,642 | 713,241 | 8 / 226 | 60.2 | | pollingQueue-7-2' | 454,667 | 778,266 | 15 / 335 | 136.2 | 306 | 468 | 5 / 176 | 0.0 | | pollingQueue-3-3 | 14,322 | 25,208 | 15 / 335 | 5.3 | 11,122 | 22,008 | 8 / 226 | 1.8 | | pollingQueue-3-4 | 79,307 | 143,490 | 15 / 335 | 36.1 | 57,632 | 121,815 | 8 / 226 | 9.9 | | pollingQueue-3-5 | 316,058 | 581,892 | 15 / 335 | 168.9 | 218,714 | 484,548 | 8 / 226 | 39.5 | | pollingQueue-3-5' | 316,058 | 581,892 | 15 / 335 | 167.7 | 74 | 108 | 5 / 176 | 0.0 | Table: MLPPE and state space reductions using SCOOP. Case study ## Implementation and Case Study #### Implementation in SCOOP: - Programmed in Haskell - Stand-alone and web-based interface - Linearisation, optimisation, state space generation | | Original | | | | Reduced | | | | |--------------------|----------|---------|------------|-------|---------|---------|------------|------| | Specification | States | Trans. | MLPPE Size | Time | States | Trans. | MLPPE Size | Time | | pollingQueue-5-1 | 170 | 256 | 15 / 335 | 0.0 | 170 | 256 | 8 / 226 | 0.0 | | pollingQueue-25-1 | 3,330 | 5,256 | 15 / 335 | 0.9 | 3,330 | 5,256 | 8 / 226 | 0.6 | | pollingQueue-100-1 | 50,805 | 81,006 | 15 / 335 | 15.9 | 50,805 | 81,006 | 8 / 226 | 11.7 | | pollingQueue-5-2 | 27,659 | 47,130 | 15 / 335 | 8.1 | 23,690 | 43,161 | 8 / 226 | 3.7 | | pollingQueue-5-2' | 27,659 | 47,130 | 15 / 335 | 8.1 | 170 | 256 | 5 / 176 | 0.0 | | pollingQueue-7-2 | 454,667 | 778,266 | 15 / 335 | 136.4 | 389,642 | 713,241 | 8 / 226 | 60.2 | | pollingQueue-7-2' | 454,667 | 778,266 | 15 / 335 | 136.2 | 306 | 468 | 5 / 176 | 0.0 | | pollingQueue-3-3 | 14,322 | 25,208 | 15 / 335 | 5.3 | 11,122 | 22,008 | 8 / 226 | 1.8 | | pollingQueue-3-4 | 79,307 | 143,490 | 15 / 335 | 36.1 | 57,632 | 121,815 | 8 / 226 | 9.9 | | pollingQueue-3-5 | 316,058 | 581,892 | 15 / 335 | 168.9 | 218,714 | 484,548 | 8 / 226 | 39.5 | | pollingQueue-3-5' | 316,058 | 581,892 | 15 / 335 | 167.7 | 74 | 108 | 5 / 176 | 0.0 | | | | | | | | | | | Table: MLPPE and state space reductions using SCOOP. Reductions # Implementation and Case Study ### Implementation in SCOOP: - Programmed in Haskell - Stand-alone and web-based interface - Linearisation, optimisation, state space generation | | Original | | | | Reduced | | | | |--------------------|----------|---------|------------|-------|---------|---------|------------|------| | Specification | States | Trans. | MLPPE Size | Time | States | Trans. | MLPPE Size | Time | | pollingQueue-5-1 | 170 | 256 | 15 / 335 | 0.0 | 170 | 256 | 8 / 226 | 0.0 | | pollingQueue-25-1 | 3,330 | 5,256 | 15 / 335 | 0.9 | 3,330 | 5,256 | 8 / 226 | 0.6 | | pollingQueue-100-1 | 50,805 | 81,006 | 15 / 335 | 15.9 | 50,805 | 81,006 | 8 / 226 | 11.7 | | pollingQueue-5-2 | 27,659 | 47,130 | 15 / 335 | 8.1 | 23,690 | 43,161 | 8 / 226 | 3.7 | | pollingQueue-5-2' | 27,659 | 47,130 | 15 / 335 | 8.1 | 170 | 256 | 5 / 176 | 0.0 | | pollingQueue-7-2 | 454,667 | 778,266 | 15 / 335 | 136.4 | 389,642 | 713,241 | 8 / 226 | 60.2 | | pollingQueue-7-2' | 454,667 | 778,266 | 15 / 335 | 136.2 | 306 | 468 | 5 / 176 | 0.0 | | pollingQueue-3-3 | 14,322 | 25,208 | 15 / 335 | 5.3 | 11,122 | 22,008 | 8 / 226 | 1.8 | | pollingQueue-3-4 | 79,307 | 143,490 | 15 / 335 | 36.1 | 57,632 | 121,815 | 8 / 226 | 9.9 | | pollingQueue-3-5 | 316,058 | 581,892 | 15 / 335 | 168.9 | 218,714 | 484,548 | 8 / 226 | 39.5 | | pollingQueue-3-5' | 316,058 | 581,892 | 15 / 335 | 167.7 | 74 | 108 | 5 / 176 | 0.0 | | | | | | | | | | | Table: MLPPE and state space reductions using SCOOP. ## Conclusions and Future Work #### Conclusions: - We introduced a new process-algebraic framework (MAPA) with data for modelling and generating Markov automata - We introduced the MLPPE for easy state space generation, parallel composition and reduction techniques #### Conclusions: - We introduced a new process-algebraic framework (MAPA) with data for modelling and generating Markov automata - We introduced the MLPPE for easy state space generation, parallel composition and reduction techniques - We showed an encoding of MAPA into prCRL - We showed when prCRL techniques can be used safely by encoding, using a novel notion of bisimulation #### Case study Conclusions #### Conclusions: - We introduced a new process-algebraic framework (MAPA) with data for modelling and generating Markov automata - We introduced the MLPPE for easy state space generation, parallel composition and reduction techniques - We showed an encoding of MAPA into prCRL - We showed when prCRL techniques can be used safely by encoding, using a novel notion of bisimulation - All our results apply to LTSs, DTMCs, CTMCs, IMCs and PAs ## Conclusions and Future Work #### Conclusions: - We introduced a new process-algebraic framework (MAPA) with data for modelling and generating Markov automata - We introduced the MLPPE for easy state space generation, parallel composition and reduction techniques - We showed an encoding of MAPA into prCRL - We showed when prCRL techniques can be used safely by encoding, using a novel notion of bisimulation - All our results apply to LTSs, DTMCs, CTMCs, IMCs and PAs #### Future Work: - Generalise confluence reduction to MAs and MAPA - Develop model checking techniques for MAs