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Introduction — probablllstlc model checking

Probabilistic model checking:
o Verifying quantitative properties,

e Using a probabilistic model (e.g., a probabilistic automaton)

@ Non-deterministically choose one of the three transitions
@ Probabilistically choose the next state

Limitations of previous approaches:
@ Susceptible to the state space explosion problem

@ Restricted treatment of data
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prCRL Confluenc

A process algebra Wlth data and probablllty. prCRL

Specification language prCRL:

Based on pCRL (so data), with additional probabilistic choice
Semantics defined in terms of probabilistic automata

Minimal set of operators to facilitate formal manipulation

Syntactic sugar easily definable

The grammar of prCRL process terms

Process terms in prCRL are obtained by the following grammar:

pu=Y®) | c=p | ptp | D p| at) f:p
x:D

x:D

Process equations and processes

A process equation is something of the form X(g : G) = p.
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An example specification

Sending an arbitrary natural number

X(active : Bool) =
not(active) = ping - Z X(b)
b:Bool
+ active =7 Z o (send(n) : X(false))

n:N>0
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+ active =7 Z o (send(n) : X(false))
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For composability we introduced extended prCRL. It extends prCRL
by parallel composition, encapsulation, hiding and renaming.

X(n:{1,2}) = writex(n) - X(n) + choose Z %: X(n")
n':{1,2}

Y(m: {1,2}) = writey(m) - Y(m) + choose’ Z %: Y(m')
m’:{1,2}

Z = a{choose,choose’}(X(l) H Y(2))
7(choose, choose’) = chooseTogether

writex (1) .e. writey (2)

(“ chooseTogether

0.25

o J
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inear format for prCRL the LPPE

LPPEs are a subset of prCRL specifications:

Z C1:>312 fl

d,:D, e, E,

Advantages of using LPPEs instead of prCRL specifications:
o Easy state space generation
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inear formaf for prCRL the LPPE

LPPEs are a subset of prCRL specifications:

Z C1:>312 fl

d,:D, e, E,

Advantages of using LPPEs instead of prCRL specifications:
o Easy state space generation
@ Straight-forward parallel composition
e Symbolic optimisations enabled at the language level

Every specification (without unguarded recursion) can be linearised
to an LPPE, preserving strong probabilistic bisimulation.
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send(1) - X(false)

send(2) - X(false)

send(2)
N J

Specification in prCRL

X (active : Bool) =
not(active) = ping - Z X(b)
b:Bool

+ active = TZ 5q - send(n) - X(false)

nN>0

v
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send(2) - X(false)

send(2)
~ J
Specification in prCRL Specification in LPPE
X(active : Bool) = X(pc:{1.3},n: N2%) =
not(active) = ping - Z X(b) + pc= 1= ping- X(2, 1)
b:Bool + pc= 2= ping - X(2,1)
+ active = TZ > : send(n) - X(false) tpc=2= TZ L X(3) )
n:N>0 et 2
+ pc = 3= send(n) - X(1, I)
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Confluence: an introductory example
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prCRL Confluence reduction

Confluence: non-probabilistic versus probabilistic

Three notions of confluence:

@ weak confluence @ weak probabilistic confluence

@ confluence = @ probabilistic confluence

@ strong confluence @ strong probabilistic confluence

o—— >0 > @
1
1 1
1 a 3
1
a 1 a
: o
1
Tc v
0-—-—-——-- > o Tc

Strong confluence Strong probabilistic confluence

States that are connected by confluent T-steps are branching bisimilar.
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Detectlng confluence symbollcally LPPEs

Example specification
X(pc : {1..2}, active : Bool) =
Z pc=1 = output(n)Z %: X(2,b)
n:{1,2,3} b:Bool
+ pc = 2 A active = beep - X(1, active)
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Detecting confluence symbolically: LPPEs

Example specification

X(pc : {1..2}, active : Bool) =
Z pc=1 = output(n)Z %: X(2,b)

n:{1,2,3} b:Bool

+ pc =2 Aactive= 7 - X(1,active)

How to know whether a summand is confluent?

@ lts action should be 7
@ lIts next state should be chosen nonprobabilistically
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Symbolic detection of confluence

i Te

X(g: Q)= Zc,:a,Zf X(n;) o—c>?
ei:E;

I

j:a 1j:a

+ZCJ§%E : X(ny) :

ej Ej I Te Y

e------ >e

Two summands i, j commute if Vg, d;,d;, e;,e; :

(ci(g, di) A ci(g, dj)) —
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n

Symbolic detection of confluence

i Te

X(g: Q)= Zc,:a,Zf X(n;) o—c>?
ei:E;

I

j:a 1j:a

+ZCJ§%E : X(ny) :

ej Ej I Te Y

e------ >e

Two summands i, j commute if Vg, d;,d;, e;,e; :

(Cl'(gvd'i) A Cj(g7dj)) — (I =J A n’i(gvdivei) = nj(gﬂdj‘/ej))
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(Cl'(gvd'i) A Cj(g7dj)) — (I =J A n’i(gvdivei) = nj(g7dj7ej))
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@ The conditions of j and j are disjoint
iipc=3= T - X(pc := 4)
J: pc =5 = send(y) - X(pc:=1)
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Heuristics for detectlng confluence

Heuristics for verifying the previous formula for summands i, j:
@ The conditions of j and j are disjoint
iipc=3= T - X(pc := 4)
J: pc =5 = send(y) - X(pc:=1)
@ Neither summand uses variables that are changed by the other
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Detecting confluence symbolically (

Heuristics for detectlng confluence

Heuristics for verifying the previous formula for summands i, j:

@ The conditions of j and j are disjoint
iipc=3= T - X(pc := 4)

J: pc =5 = send(y) - X(pc:=1)

@ Neither summand uses variables that are changed by the other
iipcl=2Ax>5Ay>2= T - X(pcl:=3,x:=0)
Jipe2=1Ay>2 = send(y) - X(pc2 :=2)

@ / = j and this summand only produces one transition per state
i pc=1=7-X(pc:=2)
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@ Two processes each throw a die

@ They synchronously communicate the results
@ The one that threw highest wins
o

In case of a tie: start over again
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Case study: leader election protocols

Basic leader election protocol

@ Two processes each throw a die

@ They synchronously communicate the results
@ The one that threw highest wins
°

In case of a tie: start over again

More advanced leader election protocol

Several processes each throw a die

They asynchronously communicate the results

The one that threw highest wins

In case of a tie: continue with those processes

\
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Introduction prCRL

Confluence reduction Dete

luence symbolicall

Applying confluence to the protocols

Case study

Original Reduced Runtime (sec)
Specification States Trans. States Trans. Before After
basicOriginal 3,763 6,158 631 758 0.45 0.22
basicReduced 1,693 2,438 541 638 0.22 0.13
leader-3-12 161,803 268,515 35,485 41,829 67.37 31.53
leader-3-15 311,536 515,328 68,926 80,338 145.17 65.82
leader-3-18 533,170 880,023 | 118,675 138,720 277.08 122.59
leader-3-21 840,799 1,385,604 | 187,972 219,201 817.67 211.87
leader-3-24 1,248,517 2,055,075 | 280,057 326,007 | 1069.71 333.32
leader-3-27 out of memory 398,170 462,364 - 503.85
leader-4-5 443,840 939,264 61,920 92,304 206.56 75.66
leader-4-6 894,299 1,880,800 | 127,579 188,044 429.87 155.96
leader-4-7 1,622,682 3,397,104 | 235,310 344,040 | 1658.38 294.09
leader-4-8 out of memory 400,125 581,468 - 653.60
leader-5-2 208,632 561,630 14,978 29,420 125.78 30.14
leader-5-3 1,390,970 3,645,135 | 112,559 208,170 | 1504.33 213.85
leader-5-4 out of memory 472,535 847,620 - 7171.73
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Original Reduced Runtime (sec)
Specification States Trans. States Trans. Before After
basicOriginal 3,763 6,158 631 758 0.45 0.22
basicReduced 1,693 2,438 541 638 0.22 0.13
leader-3-12 161,803 268,515 35,485 41,829 67.37 31.53
leader-3-15 311,536 515,328 68,926 80,338 145.17 65.82
leader-3-18 533,170 880,023 | 118,675 138,720 277.08 122.59
leader-3-21 840,799 1,385,604 | 187,972 219,201 817.67 211.87
leader-3-24 1,248,517 2,055,075 | 280,057 326,007 | 1069.71 333.32
leader-3-27 out of memory 398,170 462,864 - 503.85
leader-4-5 443,840 939,264 61,920 92,304 206.56 75.66
leader-4-6 894,299 1,880,800 | 127,579 188,044 429.87 155.96
leader-4-7 1,622,682 3,397,104 | 235,310 344,040 | 1658.38 294.09
leader-4-8 out of memory 400,125 581,468 - 653.60
leader-5-2 208,632 561,630 14,978 29,420 125.78 30.14
leader-5-3 1,390,970 3,645,135 | 112,559 208,170 | 1504.33 213.85
leader-5-4 out of memory 472,535 847,620 - 7171.73

Number of states: —85%
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Conclusions

@ We developed the process algebra prCRL, incorporating both
data and probability, including a normal form (the LPPE) as
starting point for symbolic optimisations

@ We developed three new notions of confluence for PAs that
preserve branching probabilistic bisimulation

@ We showed how these notions can be used for state space
reduction (even in the presence of 7-loops)

@ We discussed how to detect the strongest notion symbolically

@ We illustrated the power of our methods using a case study
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Conclusions

@ We developed the process algebra prCRL, incorporating both
data and probability, including a normal form (the LPPE) as
starting point for symbolic optimisations

@ We developed three new notions of confluence for PAs that
preserve branching probabilistic bisimulation

@ We showed how these notions can be used for state space
reduction (even in the presence of 7-loops)

@ We discussed how to detect the strongest notion symbolically

@ We illustrated the power of our methods using a case study

@ M. Timmer, M.I.A. Stoelinga, and J.C. van de Pol.
Confluence reduction for probabilistic systems.
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