UNIVERSITY OF TWENTE.

Formal Methods & Tools.

A linear process algebraic format for probabilistic systems

Mark Timmer January 19, 2010

Joint work with Joost-Pieter Katoen, Jaco van de Pol, and Mariëlle Stoelinga Introduction prCRL L(P)PEs Linearisation Compositionality Case study Conclusions and Future Work

Contents

- Introduction
- 2 A process algebra with data and probability: prCRL
- 3 Linear (probabilistic) process equations
- 4 Linearisation: from prCRL to LPPE
- 6 Compositionality
- 6 Case study: leader election protocol
- Conclusions and Future Work

Introduction – Dependability

Dependability of computer systems is becoming more and more important.

Windows blue screen

Ariane 5 crash

Introduction – Dependability

Dependability of computer systems is becoming more and more important.

Windows blue screen

Ariane 5 crash

Our aim: use quantitative formal methods to improve system quality.

Introduction – Model Checking

A popular solution is model checking; verifying properties of a system by constructing a model and ranging over its state space.

Introduction

Introduction – Model Checking

A popular solution is model checking; verifying properties of a system by constructing a model and ranging over its state space.

Introduction

A popular solution is model checking; verifying properties of a system by constructing a model and ranging over its state space.

iction prCRL L(P)PEs Linearisation Compositionality Case study Conclusions and Future Work

Introduction – Probabilistic Model Checking

Probabilistic model checking:

- Verifying quantitative properties,
- Using a probabilistic model (e.g., a probabilistic automaton)

troduction prCRL L(P)PEs Linearisation Compositionality Case study Conclusions and Future Work

Introduction – Probabilistic Model Checking

Probabilistic model checking:

- Verifying quantitative properties,
- Using a probabilistic model (e.g., a probabilistic automaton)

- Non-deterministically choose one of the three transitions
- Probabilistically choose the next state

ntroduction prCRL L(P)PEs Linearisation Compositionality Case study Conclusions and Future Work

Introduction – Probabilistic Model Checking

Probabilistic model checking:

- Verifying quantitative properties,
- Using a probabilistic model (e.g., a probabilistic automaton)

- Non-deterministically choose one of the three transitions
- Probabilistically choose the next state

Applications:

- Dependability analysis
- Performance analysis

 ${\sf troduction}$ prCRL L(P)PEs Linearisation Compositionality Case study Conclusions and Future Work

Introduction – Probabilistic Model Checking

Limitations of previous approaches:

- Susceptible to the state space explosion problem
- Restricted treatment of data

prCRL L(P)PEs Linearisation Compositionality Case study Conclusions and Future Work

Introduction – Probabilistic Model Checking

Limitations of previous approaches:

- Susceptible to the state space explosion problem
- Restricted treatment of data

Our approach:

- Define a probabilistic process algebra (prCRL), incorporating both data types and probabilistic choice
- Define a linear format (the LPPE), enabling symbolic optimisations at the language level
- Oevelop and implement a linearisation algorithm
- Reduce state spaces before they are generated by manipulations of the linear format.

 ${\sf troduction}$ prCRL L(P)PEs Linearisation Compositionality Case study Conclusions and Future Work

Strong probabilistic bisimulation

Equivalent PAs: strongly probabilistic bisimilar PAs

Equivalent PAs: strongly probabilistic bisimilar PAs

Strong bisimulation

An equivalence relation R is a strong bisimulation if $(p,q) \in R$ and $p \stackrel{a}{\to} p'$ imply that $q \stackrel{a}{\to} q'$ such that $(p',q') \in R$.

Equivalent PAs: strongly probabilistic bisimilar PAs

Strong bisimulation

An equivalence relation R is a strong bisimulation if $(p,q) \in R$ and $p \stackrel{a}{\to} p'$ imply that $q \stackrel{a}{\to} q'$ such that $(p',q') \in R$.

Strong probabilistic bisimulation

An equivalence relation R is a strong probabilistic bisimulation if $(p,q) \in R$ and $p \stackrel{a}{\to} \mu$ imply that $q \stackrel{a}{\to} \mu'$ such that $\mu \equiv_R \mu'$

Equivalent PAs: strongly probabilistic bisimilar PAs

Strong bisimulation

An equivalence relation R is a strong bisimulation if $(p,q) \in R$ and $p \stackrel{a}{\to} p'$ imply that $q \stackrel{a}{\to} q'$ such that $(p',q') \in R$.

Strong probabilistic bisimulation

An equivalence relation R is a strong probabilistic bisimulation if $(p,q) \in R$ and $p \stackrel{a}{\to} \mu$ imply that $q \stackrel{a}{\to} \mu'$ such that $\mu \equiv_R \mu'$

Equivalent PAs: strongly probabilistic bisimilar PAs

Strong bisimulation

An equivalence relation R is a strong bisimulation if $(p,q) \in R$ and $p \stackrel{a}{\to} p'$ imply that $q \stackrel{a}{\to} q'$ such that $(p',q') \in R$.

Strong probabilistic bisimulation

An equivalence relation R is a strong probabilistic bisimulation if $(p,q) \in R$ and $p \stackrel{a}{\to} \mu$ imply that $q \stackrel{a}{\to} \mu'$ such that $\mu \equiv_R \mu'$

Introduction – overview of our approach

troduction ${\sf prCRL}$ L(P)PEs Linearisation Compositionality Case study Conclusions and Future Work

A process algebra with data and probability: prCRL

Specification language prCRL:

- Based on μ CRL (so data), with additional probabilistic choice
- Operational semantics defined in terms of probabilistic automata
- Minimal set of operators to facilitate formal manipulation
- Syntactic sugar easily definable

A process algebra with data and probability: prCRL

The grammar of prCRL process terms

Process terms in prCRL are obtained by the following grammar:

$$p ::= Y(\vec{t}) \mid c \Rightarrow p \mid p + p \mid \sum_{x:D} p \mid a(\vec{t}) \sum_{x:D} f: p$$

- c is a condition (boolean expression)
- a is an atomic action
- f is a real-valued expression yielding values in [0,1]
- \bullet \vec{t} is a vector of expressions

A process algebra with data and probability: prCRL

The grammar of prCRL process terms

Process terms in prCRL are obtained by the following grammar:

$$p ::= Y(\vec{t}) \mid c \Rightarrow p \mid p + p \mid \sum_{x:D} p \mid a(\vec{t}) \sum_{x:D} f : p$$

- c is a condition (boolean expression)
- a is an atomic action
- f is a real-valued expression yielding values in [0,1]
- \bullet \vec{t} is a vector of expressions

Process equations and processes

A process equation is something of the form $X(\vec{g}:\vec{G}) = p$.

troduction prCRL L(P)PEs Linearisation Compositionality Case study Conclusions and Future Work

Some examples

Sending an arbitrary natural number

$$X = \tau \sum_{n:\mathbb{N}^{>0}} \frac{1}{2^n}$$
: $(\operatorname{send}(n) \cdot \sum_{j:\{*\}} 1.0: X)$

troduction prCRL L(P)PEs Linearisation Compositionality Case study Conclusions and Future Work

Some examples

Sending an arbitrary natural number

$$X = \tau \sum_{n:\mathbb{N}^{>0}} \frac{1}{2^n} : (\operatorname{send}(n) \cdot X)$$

Some examples

Sending an arbitrary natural number

$$X = \tau \sum_{n:\mathbb{N}>0} \frac{1}{2^n} : (\operatorname{send}(n) \cdot X)$$

Sending ping messages until system crash

$$X = \operatorname{ping} \sum_{i:\{1,2\}} (i = 1 \ ? \ 0.1 : \ 0.9) \colon ((i = 1 \Rightarrow \operatorname{crash}) + (i \neq 1 \Rightarrow X))$$

Some examples

Sending an arbitrary natural number

$$X = \tau \sum_{n:\mathbb{N}>0} \frac{1}{2^n} : (\operatorname{send}(n) \cdot X)$$

Sending ping messages until system crash

$$X = ping(0.1: crash \oplus 0.9: X)$$

Some examples

Sending an arbitrary natural number

$$X = \tau \sum_{n:\mathbb{N}>0} \frac{1}{2^n} : (\operatorname{send}(n) \cdot X)$$

Sending ping messages until system crash

$$X = ping(0.1: crash \oplus 0.9: X)$$

Writing all Fibonacci numbers

$$X(p : \mathbb{N}, pp : \mathbb{N}) = write(plus(p, pp)) \cdot X(plus(p, pp), p)$$

Operational semantics

NCHOICE-L
$$\frac{p \xrightarrow{\alpha} \mu}{p+q \xrightarrow{\alpha} \mu}$$

Implies
$$\frac{p \xrightarrow{\alpha} \mu}{c \Rightarrow p \xrightarrow{\alpha} \mu}$$
 if c holds

Operational semantics

NCHOICE-L
$$\frac{p \xrightarrow{\alpha} \mu}{p+q \xrightarrow{\alpha} \mu}$$

Implies
$$\frac{p \xrightarrow{\alpha} \mu}{c \Rightarrow p \xrightarrow{\alpha} \mu}$$
 if c holds

An arbitrary specification

$$X(x : \mathsf{Bool}) = x \Rightarrow a \cdot X(x) + b \cdot X(\mathsf{not}(x)) + \mathsf{not}(x) \Rightarrow c(0.5 : X(\mathsf{false}) \oplus 0.5 : X(\mathsf{true}))$$

Operational semantics

NCHOICE-L
$$\frac{p \xrightarrow{\alpha} \mu}{p+q \xrightarrow{\alpha} \mu}$$

IMPLIES
$$\frac{p \xrightarrow{\alpha} \mu}{c \Rightarrow p \xrightarrow{\alpha} \mu}$$
 if c holds

An arbitrary specification

$$X(x : \mathsf{Bool}) = x \Rightarrow a \cdot X(x) + b \cdot X(\mathsf{not}(x)) + \mathsf{not}(x) \Rightarrow c(0.5 : X(\mathsf{false}) \oplus 0.5 : X(\mathsf{true}))$$

Linear process equations

In the non-probabilistic setting, LPEs are given by

$$X(\vec{g}:\vec{G}) = \sum_{\vec{d_1}:\vec{D_1}} c_1 \Rightarrow a_1(b_1) \cdot X(\vec{n_1})$$
 \cdots
 $+ \sum_{\vec{d_k}:\vec{D_k}} c_k \Rightarrow a_k(b_k) \cdot X(\vec{n_k})$

- \bullet \vec{G} is a type for state vectors
- $\vec{D_i}$ a type for local variable vectors for summand i
- c_i is the enabling condition of summand i
- a; is an atomic action, with action-parameter vector b;
- $\vec{n_i}$ is the next-state vector of summand i.

roduction prCRL **L(P)PEs** Linearisation Compositionality Case study Conclusions and Future Work

Linear process equations – An example

Linear process equations – An example

$$\begin{array}{c|c}
 & \operatorname{read}(d) & B_1 & \operatorname{com}(d) & B_2 & \operatorname{write}(d) \\
\hline
\end{array}$$

$$B_1 = \sum_{d:D} \mathsf{read}(d) \cdot \mathsf{com}(d) \cdot B_1$$

$$B_2 = \sum_{d:D} \overline{\text{com}}(d) \cdot \text{write}(d) \cdot B_2$$

Linear process equations – An example

$$\begin{array}{c|c}
 & \text{read}(d) \\
\hline
 & B_1 \\
\hline
 & B_2 \\
\hline
 & B_$$

$$B_1 = \sum_{d:D} \mathsf{read}(d) \cdot \mathsf{com}(d) \cdot B_1$$

$$B_2 = \sum_{d:D} \overline{\text{com}}(d) \cdot \text{write}(d) \cdot B_2$$

$$X(a: \{1,2\}, b: \{1,2\}, x: D, y: D) =$$

$$\sum_{d:D} a = 1 \Rightarrow read(d) \cdot X(2, b, d, y)$$
(1)
$$+ a = 2 \land b = 1 \Rightarrow com(x) \cdot X(1, 2, x, x)$$
(2)
$$+ b = 2 \Rightarrow write(y) \cdot X(a, 1, x, y)$$
(3)

A linear format for prCRL: the LPPE

In the probabilistic setting, LPPEs are given by

$$egin{aligned} X(ec{g}:ec{G}) &= \sum_{ec{d_1}:ec{D_1}} c_1 \Rightarrow a_1(b_1) \sum_{ec{e_1}:ec{E_1}} f_1\colon X(ec{n_1}) \ & \cdots \ &+ \sum_{ec{d_k}:ec{D_k}} c_k \Rightarrow a_k(b_k) \sum_{ec{e_k}:ec{E_k}} f_k\colon X(ec{n_k}) \end{aligned}$$

A linear format for prCRL: the LPPE

In the probabilistic setting, LPPEs are given by

$$egin{aligned} X(ec{g}:ec{G}) &= \sum_{ec{d_1}:ec{D_1}} c_1 \Rightarrow a_1(b_1) \sum_{ec{e_1}:ec{E_1}} f_1\colon X(ec{n_1}) \ & \cdots \ &+ \sum_{ec{d_k}:ec{D_k}} c_k \Rightarrow a_k(b_k) \sum_{ec{e_k}:ec{E_k}} f_k\colon X(ec{n_k}) \end{aligned}$$

Advantages of using LPPEs instead of prCRL specifications:

- Easy state space generation
- Straight-forward parallel composition
- Symbolic optimisations enabled at the language level

A linear format for prCRL: the LPPE

An example

$$egin{aligned} X(\mathsf{pc}:\{1,2\},d:D) &= \mathsf{pc} = 1 \Rightarrow au \sum_{e:D} rac{1}{|D|} \colon X(2,e) \ &+ \mathsf{pc} = 2 \Rightarrow \mathsf{send}(d) \cdot X(1,d)) \end{aligned}$$

A linear format for prCRL: the LPPE

An example

$$egin{aligned} X(\mathsf{pc}:\{1,2\},d:D) &= \mathsf{pc} = 1 \Rightarrow au \sum_{e:D} rac{1}{|D|} \colon X(2,e) \ &+ \mathsf{pc} = 2 \Rightarrow \mathsf{send}(d) \cdot X(1,d)) \end{aligned}$$

Introduction prCRL L(P)PEs Linearisation Compositionality Case study Conclusions and Future Work

$$X = a \cdot b \cdot c \cdot X$$

$$X = a \cdot b \cdot c \cdot X$$

$$X = a \cdot b \cdot c \cdot X$$

$$X = a \cdot b \cdot c \cdot X$$

$$Y(pc: \{1,2,3\}) = pc = 1 \Rightarrow a \cdot Y(2) + pc = 2 \Rightarrow b \cdot Y(3) + pc = 3 \Rightarrow c \cdot Y(1)$$

Introduction prCRL L(P)PEs Linearisation Compositionality Case study Conclusions and Future Work

$$X = \sum_{d : D} \mathsf{in}(d) \cdot (\tau \cdot \mathsf{loss} \cdot X + \tau \cdot \mathsf{out}(d) \cdot X)$$

$$X = \sum_{d:D} \operatorname{in}(d) \cdot (\tau \cdot \operatorname{loss} \cdot X + \tau \cdot \operatorname{out}(d) \cdot X)$$

$$X = \sum_{d:D} in(d) \cdot (\tau \cdot loss \cdot X + \tau \cdot out(d) \cdot X)$$

$$X = \sum_{d:D} in(d) \cdot (\tau \cdot loss \cdot X + \tau \cdot out(d) \cdot X)$$

$$Y(pc: \{1, 2, 3, 4\}, x: D) =$$

$$\sum_{d:D} pc = 1 \Rightarrow in(d) \cdot Y(2, d)$$
+ $pc = 2 \Rightarrow \tau \cdot Y(3, x)$
+ $pc = 2 \Rightarrow \tau \cdot Y(4, x)$
+ $pc = 3 \Rightarrow loss \cdot Y(1, x)$
+ $pc = 4 \Rightarrow out(x) \cdot Y(1, x)$

$$X = \sum_{d:D} in(d) \cdot (\tau \cdot loss \cdot X + \tau \cdot out(d) \cdot X)$$

$$Y(pc: \{1, 2, 3, 4\}, x: D) =$$

$$\sum_{d:D} pc = 1 \Rightarrow in(d) \cdot Y(2, d)$$
+ $pc = 2 \Rightarrow \tau \cdot Y(3, x)$
+ $pc = 2 \Rightarrow \tau \cdot Y(4, x)$
+ $pc = 3 \Rightarrow loss \cdot Y(1, x)$
+ $pc = 4 \Rightarrow out(x) \cdot Y(1, x)$

Initial process: $Y(1, d_1)$.

$$X(d:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} : \left(c(e) \cdot c(f) \cdot X(5) + c(e+f) \cdot X(5) \right)$$

Introduction

$$X(d:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} : \left(c(e) \cdot c(f) \cdot X(5) + c(e+f) \cdot X(5) \right)$$

$$1 \quad X_1(d:D,e:D,f:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} : (c(e) \cdot c(f) \cdot X(5) + c(e+f) \cdot X(5))$$

Introduction

$$X(d:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} : \left(c(e) \cdot c(f) \cdot X(5) + c(e+f) \cdot X(5) \right)$$

1
$$X_1(d:D,e:D,f:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} : (c(e) \cdot c(f) \cdot X(5) + c(e+f) \cdot X(5))$$

Introduction

$$X(d:D) = \sum_{e:D} \mathsf{a}(d+e) \sum_{f:D} \tfrac{1}{|D|} \colon \left(c(e) \cdot c(f) \cdot X(5) + c(e+f) \cdot X(5) \right)$$

- $1 X_1(d:D,e:D,f:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} : (c(e) \cdot c(f) \cdot X(5) + c(e+f) \cdot X(5))$
- 2 $X_1(d:D,e:D,f:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} \cdot X_2(d,e,f)$

$$X(d:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} : \left(c(e) \cdot c(f) \cdot X(5) + c(e+f) \cdot X(5) \right)$$

- $X_1(d:D,e:D,f:D) =$ $\sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} : (c(e) \cdot c(f) \cdot X(5) + c(e+f) \cdot X(5))$
- $X_1(d:D,e:D,f:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} \cdot X_2(d,e,f)$ $X_2(d:D,e:D,f:D) = c(e) \cdot c(f) \cdot X(5) + c(e+f) \cdot X(5)$

$$X(d:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} : \left(c(e) \cdot c(f) \cdot X(5) + c(e+f) \cdot X(5) \right)$$

- $X_1(d:D,e:D,f:D) =$ $\sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} : (c(e) \cdot c(f) \cdot X(5) + c(e+f) \cdot X(5))$
- $X_1(d:D,e:D,f:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} \cdot X_2(d,e,f)$ $X_2(d:D,e:D,f:D) = c(e) \cdot c(f) \cdot X(5) + c(e+f) \cdot X(5)$

$$X(d:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} : \left(c(e) \cdot c(f) \cdot X(5) + c(e+f) \cdot X(5) \right)$$

- $X_1(d:D,e:D,f:D) =$ $\sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} : (c(e) \cdot c(f) \cdot X(5) + c(e+f) \cdot X(5))$
- $X_1(d:D,e:D,f:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} \cdot X_2(d,e,f)$ $X_2(d:D,e:D,f:D) = c(e) \cdot c(f) \cdot X(5) + c(e+f) \cdot X(5)$
- $X_1(d:D,e:D,f:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} \cdot X_2(d,e,f)$

$$X(d:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} : \left(c(e) \cdot c(f) \cdot X(5) + c(e+f) \cdot X(5) \right)$$

- $X_1(d:D,e:D,f:D) =$ $\sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} : (c(e) \cdot c(f) \cdot X(5) + c(e+f) \cdot X(5))$
- $X_1(d:D,e:D,f:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} \cdot X_2(d,e,f)$ $X_2(d:D,e:D,f:D) = c(e) \cdot c(f) \cdot X(5) + c(e+f) \cdot X(5)$
- 3 $X_1(d:D,e:D,f:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} \cdot X_2(d,e,f)$ $X_2(d:D,e:D,f:D) = c(e) \cdot X_3(d,e,f) + c(e+f) \cdot X_1(5,e,f)$

$$X(d:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} : \left(c(e) \cdot c(f) \cdot X(5) + c(e+f) \cdot X(5) \right)$$

- $X_1(d:D,e:D,f:D) =$ $\sum_{e \in D} a(d+e) \sum_{f \in D} \frac{1}{|D|} : (c(e) \cdot c(f) \cdot X(5) + c(e+f) \cdot X(5))$
- 2 $X_1(d:D,e:D,f:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} \cdot X_2(d,e,f)$ $X_2(d:D,e:D,f:D) = c(e) \cdot c(f) \cdot X(5) + c(e+f) \cdot X(5)$
- $X_1(d:D,e:D,f:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} \cdot X_2(d,e,f)$ $X_2(d:D,e:D,f:D) = c(e) \cdot X_3(d,e,f) + c(e+f) \cdot X_1(5,e,f)$ $X_3(d:D,e:D,f:D) = c(f) \cdot X(5)$

$$X(d:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} : \left(c(e) \cdot c(f) \cdot X(5) + c(e+f) \cdot X(5) \right)$$

- 1 $X_1(d:D,e:D,f:D) =$ $\sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} : (c(e) \cdot c(f) \cdot X(5) + c(e+f) \cdot X(5))$
- 2 $X_1(d:D,e:D,f:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} \cdot X_2(d,e,f)$ $X_2(d:D,e:D,f:D) = c(e) \cdot c(f) \cdot X(5) + c(e+f) \cdot X(5)$
- 3 $X_1(d:D,e:D,f:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} \cdot X_2(d,e,f)$ $X_2(d:D,e:D,f:D) = c(e) \cdot X_3(d,e,f) + c(e+f) \cdot X_1(5,e,f)$ $X_3(d:D,e:D,f:D) = c(f) \cdot X(5)$
- 4 $X_1(d:D,e:D,f:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} \cdot X_2(d,e,f)$ $X_2(d:D,e:D,f:D) = c(e) \cdot X_3(d,e,f) + c(e+f) \cdot X_1(5,e,f)$

$$X(d:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} : \left(c(e) \cdot c(f) \cdot X(5) + c(e+f) \cdot X(5) \right)$$

- 1 $X_1(d:D,e:D,f:D) =$ $\sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} : (c(e) \cdot c(f) \cdot X(5) + c(e+f) \cdot X(5))$
- 2 $X_1(d:D,e:D,f:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} \cdot X_2(d,e,f)$ $X_2(d:D,e:D,f:D) = c(e) \cdot c(f) \cdot X(5) + c(e+f) \cdot X(5)$
- 3 $X_1(d:D,e:D,f:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} \cdot X_2(d,e,f)$ $X_2(d:D,e:D,f:D) = c(e) \cdot X_3(d,e,f) + c(e+f) \cdot X_1(5,e,f)$ $X_3(d:D,e:D,f:D) = c(f) \cdot X(5)$
- 4 $X_1(d:D,e:D,f:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} \cdot X_2(d,e,f)$ $X_2(d:D,e:D,f:D) = c(e) \cdot X_3(d,e,f) + c(e+f) \cdot X_1(5,e,f)$

$$X(d:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} : \left(c(e) \cdot c(f) \cdot X(5) + c(e+f) \cdot X(5) \right)$$

- 1 $X_1(d:D,e:D,f:D) =$ $\sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} : (c(e) \cdot c(f) \cdot X(5) + c(e+f) \cdot X(5))$
- 2 $X_1(d:D,e:D,f:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} \cdot X_2(d,e,f)$ $X_2(d:D,e:D,f:D) = c(e) \cdot c(f) \cdot X(5) + c(e+f) \cdot X(5)$
- 3 $X_1(d:D,e:D,f:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} \cdot X_2(d,e,f)$ $X_2(d:D,e:D,f:D) = c(e) \cdot X_3(d,e,f) + c(e+f) \cdot X_1(5,e,f)$ $X_3(d:D,e:D,f:D) = c(f) \cdot X(5)$
- 4 $X_1(d:D,e:D,f:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} \cdot X_2(d,e,f)$ $X_2(d:D,e:D,f:D) = c(e) \cdot X_3(d,e,f) + c(e+f) \cdot X_1(5,e,f)$ $X_3(d:D,e:D,f:D) = c(f) \cdot X_1(5,e,f)$

$$X(d:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} : \left(c(e) \cdot c(f) \cdot X(5) + c(e+f) \cdot X(5) \right)$$

$$X_1(d:D,e:D,f:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} \cdot X_2(d,e,f)$$

$$X_2(d:D,e:D,f:D) = c(e) \cdot X_3(d,e,f) + c(e+f) \cdot X_1(5,e,f)$$

$$X_3(d:D,e:D,f:D) = c(f) \cdot X_1(5,e,f)$$

$$X(d:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} : \left(c(e) \cdot c(f) \cdot X(5) + c(e+f) \cdot X(5) \right)$$

$$X_{1}(d:D,e:D,f:D) = \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} \cdot X_{2}(d,e,f)$$

$$X_{2}(d:D,e:D,f:D) = c(e) \cdot X_{3}(d,e,f) + c(e+f) \cdot X_{1}(5,e,f)$$

$$X_{3}(d:D,e:D,f:D) = c(f) \cdot X_{1}(5,e,f)$$

$$X(pc:\{1,2,3\},d:D,e:D,f:D) = pc = 1 \Rightarrow \sum_{e:D} a(d+e) \sum_{f:D} \frac{1}{|D|} \cdot X(2,d,e,f)$$

$$+ pc = 2 \Rightarrow c(e) \cdot X(3,d,e,f)$$

$$+ pc = 2 \Rightarrow c(e+f) \cdot X(1,5,e,f)$$

$$+ pc = 3 \Rightarrow c(f) \cdot X(1,5,e,f)$$

ntroduction prCRL L(P)PEs **Linearisation** Compositionality Case study Conclusions and Future Work

Linearisation

In general, we always linearise in two steps:

- Transform the specification to intermediate regular form (IRF) (every process is a summation of single-action terms)
- Merge all processes into one big process by introducing a program counter

In the first step, global parameters are introduced to remember the values of bound variables.

Theorem

A specification S and the specification S' obtained by linearising S are strongly probabilistic bisimilar.

prCRL L(P)PEs Linearisation Compositionality Case study Conclusions and Future Work

Extended prCRL

For compositionality we introduce extended prCRL. It extends prCRL by parallel composition, encapsulation, hiding and renaming.

Extended prCRL

For compositionality we introduce extended prCRL. It extends prCRL by parallel composition, encapsulation, hiding and renaming.

The grammar of extended prCRL process terms

Process terms in extended prCRL are obtained by:

$$q ::= p \mid q \mid q \mid \partial_E(q) \mid \tau_H(q) \mid \rho_R(q)$$

- $q_1 || q_2$: parallel composition with ACP-style communication
- $\partial_F(q)$: encapsulation of all actions in E
- $\tau_H(q)$: hiding of all actions in H
- $\rho_R(q)$: renaming of actions according to the function R

prCRL L(P)PEs Linearisation Compositionality Case study Conclusions and Future Work

PAR-L
$$\frac{p \xrightarrow{\alpha} \mu}{p \mid\mid q \xrightarrow{\alpha} \mu'}$$
 where $\forall p' \cdot \mu'(p' \mid\mid q) = \mu(p')$

PAR-L
$$\frac{p \xrightarrow{\alpha} \mu}{p \mid\mid q \xrightarrow{\alpha} \mu'}$$
 where $\forall p' \cdot \mu'(p' \mid\mid q) = \mu(p')$

$$X(d:D) = \operatorname{out}(d) \sum_{d':D} \frac{1}{|D|} : X(d') \quad Y(n:\mathbb{N}) = \operatorname{write}(n) \cdot Y(n+1)$$

$$Z = X(d_1) || Y(0)$$

PAR-L
$$\frac{p \xrightarrow{\alpha} \mu}{p \mid\mid q \xrightarrow{\alpha} \mu'}$$
 where $\forall p' \cdot \mu'(p' \mid\mid q) = \mu(p')$

$$X(d:D) = \operatorname{out}(d) \sum_{d':D} \frac{1}{|D|} : X(d') \quad Y(n:\mathbb{N}) = \operatorname{write}(n) \cdot Y(n+1)$$

$$Z = X(d_1) \mid\mid Y(0)$$

PAR-L
$$\frac{p \xrightarrow{\alpha} \mu}{p \mid\mid q \xrightarrow{\alpha} \mu'}$$
 where $\forall p' \cdot \mu'(p' \mid\mid q) = \mu(p')$

$$X(d:D) = \operatorname{out}(d) \sum_{d':D} \frac{1}{|D|} : X(d') \quad Y(n:\mathbb{N}) = \operatorname{write}(n) \cdot Y(n+1)$$

$$Z = X(d_1) \mid\mid Y(0)$$

For communication we assume a partial function

$$\gamma \colon \mathsf{Act} \times \mathsf{Act} \to \mathsf{Act}$$

When $(a, b) \in dom(\gamma)$, communication between a and b yields $\gamma(a, b)$.

For communication we assume a partial function

$$\gamma \colon \mathsf{Act} \times \mathsf{Act} \to \mathsf{Act}$$

When $(a, b) \in dom(\gamma)$, communication between a and b yields $\gamma(a, b)$.

$$\frac{p \xrightarrow{a(\tilde{t})} \mu \qquad q \xrightarrow{b(\tilde{t})} \mu'}{p \mid\mid q \xrightarrow{c(\tilde{t})} \mu''} \text{ if } \gamma(a,b) = c, \\ \forall p', q' \cdot \mu''(p' \mid\mid q') = \mu(p') \cdot \mu'(q')$$

$$X(n: \{2,3\}) = \text{write}(n) \cdot X(n) + c \sum_{n': \{2,3\}} \frac{1}{2} : X(n')$$
 $Y(m: \{2,3\}) = \text{write}'(m^2) \cdot Y(m) + c' \sum_{m': \{2,3\}} \frac{1}{2} : Y(m')$
 $Z = \partial_{\{c,c'\}}(X(2) || Y(3)) \qquad \gamma(c,c') = \text{choose}$

$$X(n:\{2,3\}) = \text{write}(n) \cdot X(n) + c \sum_{n':\{2,3\}} \frac{1}{2} : X(n')$$
 $Y(m:\{2,3\}) = \text{write}'(m^2) \cdot Y(m) + c' \sum_{m':\{2,3\}} \frac{1}{2} : Y(m')$
 $Z = \partial_{\{c,c'\}}(X(2)||Y(3)) \qquad \gamma(c,c') = \text{choose}$

troduction prCRL L(P)PEs Linearisation Compositionality Case study Conclusions and Future Work

Linearisation of parallel composition

Linearisation of X || Y is done compositionally: we first transform X and Y to LPPE, and then put them in parallel.

Linearisation of parallel composition

Linearisation of X || Y is done compositionally: we first transform X and Y to LPPE, and then put them in parallel.

$$X(g) = \sum_{d} c \Rightarrow a(b) \sum_{e} f : X(n)$$
 $Y(g') = \sum_{d'} c' \Rightarrow a'(b') \sum_{e'} f' : Y(n')$

Linearisation of parallel composition

Linearisation of X || Y is done compositionally: we first transform X and Y to LPPE, and then put them in parallel.

$$X(g) = \sum_{d} c \Rightarrow a(b) \sum_{e} f : X(n)$$

$$Y(g') = \sum_{d'} c' \Rightarrow a'(b') \sum_{e'} f' : Y(n')$$

$$Z(g,g') = \sum_{d} c \Rightarrow a(b) \sum_{e} f: Z(n,g')$$

$$+ \sum_{d'} c' \Rightarrow a'(b') \sum_{e'} f': Z(g,n')$$

$$+ \sum_{(d,d')} c \wedge c' \wedge b = b' \Rightarrow \gamma(a,a')(b) \sum_{(e,e')} f \cdot f': Z(n,n')$$

roduction prCRL L(P)PEs Linearisation Compositionality Case study Conclusions and Future Work

Linearisation of hiding, encapsulation and renaming

Linearisation of hiding, encapsulation and renaming is also done compositionally.

Linearisation of hiding, encapsulation and renaming is also done compositionally.

$$X(g:G) = \sum_{d_1:D_1} c_1 \Rightarrow a_1(b_1) \sum_{e_1:E_1} f_1: X(n_1)$$
 $+ \sum_{d_2:D_2} c_2 \Rightarrow a_2(b_2) \sum_{e_2:E_2} f_2: X(n_2)$
 $+ \sum_{d_3:D_3} c_3 \Rightarrow a_3(b_3) \sum_{e_3:E_3} f_3: X(n_3)$

Linearisation of hiding, encapsulation and renaming is also done compositionally.

$$\begin{aligned} \tau_{\{a_2\}}(X(g:G)) &= \sum_{d_1:D_1} c_1 \Rightarrow a_1(b_1) \sum_{e_1:E_1} f_1 \colon X(n_1) \\ &+ \sum_{d_2:D_2} c_2 \Rightarrow a_2(b_2) \sum_{e_2:E_2} f_2 \colon X(n_2) \\ &+ \sum_{d_3:D_3} c_3 \Rightarrow a_3(b_3) \sum_{e_3:E_3} f_3 \colon X(n_3) \end{aligned}$$

Linearisation of hiding, encapsulation and renaming is also done compositionally.

$$\frac{\tau_{\{a_2\}}(X(g:G))}{(a_1:D_1)} = \sum_{d_1:D_1} c_1 \Rightarrow a_1(b_1) \sum_{e_1:E_1} f_1: X(n_1) \\
+ \sum_{d_2:D_2} c_2 \Rightarrow \tau \sum_{e_2:E_2} f_2: X(n_2) \\
+ \sum_{d_3:D_3} c_3 \Rightarrow a_3(b_3) \sum_{e_3:E_3} f_3: X(n_3)$$

Linearisation of hiding, encapsulation and renaming is also done compositionally.

$$\frac{\tau_{\{a_2\}}(X(g:G))}{+\sum_{d_1:D_1} c_1} = \sum_{a_1(b_1)} \sum_{e_1:E_1} f_1: X(n_1) \\
+ \sum_{d_2:D_2} c_2 \Rightarrow \tau \qquad \sum_{e_2:E_2} f_2: X(n_2) \\
+ \sum_{d_3:D_3} c_3 \Rightarrow a_3(b_3) \sum_{e_3:E_3} f_3: X(n_3)$$

Theorem

A specification S in extended prCRL and the specification S'obtained by linearising S are strongly probabilistic bisimilar.

prCRL L(P)PEs Linearisation Compositionality Case study Conclusions and Future Work

Case study: a leader election protocol

Implementation

- Haskell: one-to-one mapping of algorithms to code
- Linearisation: from prCRL to LPPE
- Parallel composition of LPPEs, hiding, renaming, encapsulation

Case study: a leader election protocol

Implementation

- Haskell: one-to-one mapping of algorithms to code
- Linearisation: from prCRL to LPPE
- Parallel composition of LPPEs, hiding, renaming, encapsulation

Case study: leader election protocol à la Itai-Rodeh

- Two processes throw a coin
 - Both heads or both tails → throw again
 - One of them heads \rightarrow this will be the leader

prCRL L(P)PEs Linearisation Compositionality Case study Conclusions and Future Work

Case study: a leader election protocol

Implementation

- Haskell: one-to-one mapping of algorithms to code
- Linearisation: from prCRL to LPPE
- Parallel composition of LPPEs, hiding, renaming, encapsulation

Case study: leader election protocol à la Itai-Rodeh

- Two processes throw a coin
 - Both heads or both tails → throw again
 - One of them heads → this will be the leader
- More precise:
 - Passive thread: receive value of opponent
 - Active thread: flip, send, compare (or block)

prCRL L(P)PEs Linearisation Compositionality Case study Conclusions and Future Work

A prCRL model of the leader election protocol

 $P(id : \{1, 2\}, val : D, set : Bool) =$

troduction prCRL L(P)PEs Linearisation Compositionality Case study Conclusions and Future Work

$$P(id : \{1,2\}, val : D, set : Bool) =$$

$$set = false \Rightarrow \sum_{d:D} rec(id, other(id), d) \cdot P(id, d, true))$$

$$P(id: \{1, 2\}, val: D, set: Bool) =$$
 $set = false \Rightarrow \sum_{d:D} rec(id, other(id), d) \cdot P(id, d, true))$
 $+ set = true \Rightarrow getVal(val).P(id, val, false)$

$$P(id: \{1,2\}, val: D, set: Bool) = \\ set = false \Rightarrow \sum_{d:D} rec(id, other(id), d) \cdot P(id, d, true)) \\ + set = true \Rightarrow getVal(val).P(id, val, false) \\ A(id: Id) =$$

$$\begin{split} P(\textit{id}: \{1,2\}, \textit{val}: \textit{D}, \textit{set}: \textit{Bool}) = \\ \textit{set} = \textit{false} &\Rightarrow \sum_{d:D} \textit{rec}(\textit{id}, \textit{other}(\textit{id}), \textit{d}) \cdot P(\textit{id}, \textit{d}, \textit{true})) \\ + \textit{set} = \textit{true} &\Rightarrow \textit{getVal}(\textit{val}).P(\textit{id}, \textit{val}, \textit{false}) \\ A(\textit{id}: \textit{Id}) = \\ \textit{flip}(\textit{id}) \sum_{d:D} \frac{1}{2} : \textit{send}(\textit{other}(\textit{id}), \textit{id}, \textit{d}) \cdot \sum_{c:D} \textit{readVal}(e). \end{split}$$

$$\begin{split} P(\textit{id}: \{1,2\}, \textit{val}: \textit{D}, \textit{set}: \textit{Bool}) = \\ \textit{set} = \textit{false} &\Rightarrow \sum_{d:D} \textit{rec}(\textit{id}, \textit{other}(\textit{id}), \textit{d}) \cdot P(\textit{id}, \textit{d}, \textit{true})) \\ + \textit{set} = \textit{true} &\Rightarrow \textit{getVal}(\textit{val}).P(\textit{id}, \textit{val}, \textit{false}) \\ A(\textit{id}: \textit{Id}) = \\ \textit{flip}(\textit{id}) \sum_{d:D} \frac{1}{2} : \textit{send}(\textit{other}(\textit{id}), \textit{id}, \textit{d}) \cdot \sum_{D:D} \textit{readVal}(\textit{e}). \end{split}$$

$$\begin{split} P(id: \{1,2\}, val: D, set: Bool) = \\ set &= false \Rightarrow \sum_{d:D} rec(id, other(id), d) \cdot P(id, d, true)) \\ + set &= true \Rightarrow \textit{getVal}(val).P(id, val, false) \\ A(id: Id) &= \\ flip(id) \sum_{d:D} \frac{1}{2} : \textit{send}(other(id), id, d) \cdot \sum_{e:D} \textit{readVal}(e). \\ \big((d = e \Rightarrow A(id)) \\ + (d = heads \land d \neq e \Rightarrow leader(id) \cdot A(id)) \\ + (d = tails \land d \neq e \Rightarrow follower(id) \cdot A(id)) \big) \end{split}$$

$$\begin{split} P(id:\{1,2\},val:D,set:Bool) = \\ set = false &\Rightarrow \sum_{d:D} rec(id,other(id),d) \cdot P(id,d,true)) \\ + set = true &\Rightarrow getVal(val).P(id,val,false) \\ A(id:Id) = \\ flip(id) \sum_{d:D} \frac{1}{2} : send(other(id),id,d) \cdot \sum_{e:D} readVal(e). \\ ((d = e \Rightarrow A(id)) \\ + (d = heads \land d \neq e \Rightarrow leader(id) \cdot A(id)) \\ + (d = tails \land d \neq e \Rightarrow follower(id) \cdot A(id))) \\ C(id:Id) = P(id,heads,false) || A(id) \end{split}$$

$$P(id: \{1,2\}, val: D, set: Bool) = \\ set = false \Rightarrow \sum_{d:D} rec(id, other(id), d) \cdot P(id, d, true)) \\ + set = true \Rightarrow getVal(val).P(id, val, false) \\ A(id: Id) = \\ flip(id) \sum_{d:D} \frac{1}{2} : send(other(id), id, d) \cdot \sum_{e:D} readVal(e). \\ ((d = e \Rightarrow A(id)) \\ + (d = heads \land d \neq e \Rightarrow leader(id) \cdot A(id)) \\ + (d = tails \land d \neq e \Rightarrow follower(id) \cdot A(id))) \\ C(id: Id) = P(id, heads, false) || A(id)$$

 $\gamma(getVal, readVal) = checkVal$

$$\begin{split} P(\textit{id}: \{1,2\}, \textit{val}: \textit{D}, \textit{set}: \textit{Bool}) &= \\ \textit{set} &= \textit{false} \Rightarrow \sum_{\textit{d}:\textit{D}} \textit{rec}(\textit{id}, \textit{other}(\textit{id}), \textit{d}) \cdot P(\textit{id}, \textit{d}, \textit{true})) \\ + \textit{set} &= \textit{true} \Rightarrow \textit{getVal}(\textit{val}).P(\textit{id}, \textit{val}, \textit{false}) \\ A(\textit{id}: \textit{Id}) &= \\ \textit{flip}(\textit{id}) \sum_{\textit{d}:\textit{D}} \frac{1}{2} : \textit{send}(\textit{other}(\textit{id}), \textit{id}, \textit{d}) \cdot \sum_{\textit{e}:\textit{D}} \textit{readVal}(\textit{e}). \\ \big((\textit{d} = \textit{e} \Rightarrow \textit{A}(\textit{id})) \\ + (\textit{d} = \textit{heads} \land \textit{d} \neq \textit{e} \Rightarrow \textit{leader}(\textit{id}) \cdot \textit{A}(\textit{id})) \\ + (\textit{d} = \textit{tails} \land \textit{d} \neq \textit{e} \Rightarrow \textit{follower}(\textit{id}) \cdot \textit{A}(\textit{id})) \big) \\ C(\textit{id}: \textit{Id}) &= \partial_{\textit{getVal},\textit{readVal}}(P(\textit{id}, \textit{heads}, \textit{false}) \mid\mid \textit{A}(\textit{id})) \end{split}$$

 $\gamma(getVal, readVal) = checkVal$

$$P(id: \{1,2\}, val: D, set: Bool) = \\ set = false \Rightarrow \sum_{d:D} rec(id, other(id), d) \cdot P(id, d, true)) \\ + set = true \Rightarrow getVal(val).P(id, val, false) \\ A(id: Id) = \\ flip(id) \sum_{d:D} \frac{1}{2} : send(other(id), id, d) \cdot \sum_{e:D} readVal(e). \\ ((d = e \Rightarrow A(id)) \\ + (d = heads \land d \neq e \Rightarrow leader(id) \cdot A(id)) \\ + (d = tails \land d \neq e \Rightarrow follower(id) \cdot A(id))) \\ C(id: Id) = \partial_{getVal, readVal}(P(id, heads, false) || A(id)) \\ S = C(1) || C(2)$$

$$P(id: \{1,2\}, val: D, set: Bool) = \\ set = false \Rightarrow \sum_{d:D} rec(id, other(id), d) \cdot P(id, d, true)) \\ + set = true \Rightarrow getVal(val).P(id, val, false) \\ A(id: Id) = \\ flip(id) \sum_{d:D} \frac{1}{2} : send(other(id), id, d) \cdot \sum_{e:D} readVal(e). \\ ((d = e \Rightarrow A(id)) \\ + (d = heads \land d \neq e \Rightarrow leader(id) \cdot A(id)) \\ + (d = tails \land d \neq e \Rightarrow follower(id) \cdot A(id))) \\ C(id: Id) = \partial_{getVal, readVal}(P(id, heads, false) || A(id)) \\ S = C(1) || C(2)$$

$$\gamma(rec, send) = comm \qquad \gamma(getVal, readVal) = checkVal)$$

$$P(id: \{1,2\}, val: D, set: Bool) = \\ set = false \Rightarrow \sum_{d:D} rec(id, other(id), d) \cdot P(id, d, true)) \\ + set = true \Rightarrow getVal(val).P(id, val, false) \\ A(id: Id) = \\ flip(id) \sum_{d:D} \frac{1}{2} : send(other(id), id, d) \cdot \sum_{e:D} readVal(e). \\ ((d = e \Rightarrow A(id)) \\ + (d = heads \land d \neq e \Rightarrow leader(id) \cdot A(id)) \\ + (d = tails \land d \neq e \Rightarrow follower(id) \cdot A(id))) \\ C(id: Id) = \partial_{getVal, readVal}(P(id, heads, false) || A(id)) \\ S = \partial_{send, rec}(C(1) || C(2))$$

$$\gamma(rec, send) = comm \qquad \gamma(getVal, readVal) = checkVal)$$

roduction prCRL L(P)PEs Linearisation Compositionality **Case study** Conclusions and Future Work

Reductions on the leader election protocol model

In order to obtain reductions: first linearise

prCRL L(P)PEs Linearisation Compositionality Case study Conclusions and Future Work

Reductions on the leader election protocol model

In order to obtain reductions: first linearise

In order to obtain reductions: first linearise

```
Z(pc11 : {1..1}, id11 : Ids, val11 : D, set11 : Bool, d11 : D, pc21 : {1..4},
       id21 : Id, d21 : D, e21 : D, pc12 : {1..1}, id12 : Ids, val12 : D,
       set12 : Bool, d12 : D, pc22 : {1..4}, id22 : Id, d22 : D, e22 : D) =
     \sum pc21 = 3 \land pc11 = 1 \land set11 \land val11 = e21 \Rightarrow
     e21·D
           checkVal(val11) \searrow multiply(1.0, 1.0):
                             (k1,k2):\{*\}\times\{*\}
           Z(1, id11, val11, false, tails, 4, id21, d21, e21,
              pc12, id12, val12, set12, d12, pc22, id22, d22, e22)
```

In order to obtain reductions: first linearise

```
Z(pc11 : \{1..1\}, id11 : Ids, val11 : D, set11 : Bool, d11 : D, pc21 : \{1..4\},
       id21 : Id, d21 : D, e21 : D, pc12 : {1..1}, id12 : Ids, val12 : D,
       set12 : Bool, d12 : D, pc22 : {1..4}, id22 : Id, d22 : D, e22 : D) =
     \sum pc21 = 3 \land pc11 = 1 \land set11 \land val11 = e21 \Rightarrow
     e21·D
           checkVal(val11) \searrow multiply(1.0, 1.0):
                              (k1,k2):\{*\}\times\{*\}
           Z(1, id11, val11, false, tails, 4, id21, d21, e21,
              pc12, id12, val12, set12, d12, pc22, id22, d22, e22)
```

In order to obtain reductions: first linearise

```
Z(pc11 : \{1..1\}, id11 : lds, val11 : D, set11 : Bool, d11 : D, pc21 : \{1..4\},
       id21 : Id, d21 : D, e21 : D, pc12 : {1..1}, id12 : Ids, val12 : D,
       set12 : Bool, d12 : D, pc22 : {1..4}, id22 : Id, d22 : D, e22 : D) =
     \sum pc21 = 3 \land pc11 = 1 \land set11 \land val11 = e21 \Rightarrow
     e21·D
           checkVal(val11) \searrow multiply(1.0, 1.0):
                              (k1,k2):\{*\}\times\{*\}
           Z(1, id11, val11, false, tails, 4, id21, d21, e21,
              pc12, id12, val12, set12, d12, pc22, id22, d22, e22)
```

In order to obtain reductions: first linearise

```
Z(pc11 : \{1..1\}, id11 : lds, val11 : D, set11 : Bool, d11 : D, pc21 : \{1..4\},
       id21 : Id, d21 : D, e21 : D, pc12 : {1..1}, id12 : Ids, val12 : D,
       set12 : Bool, d12 : D, pc22 : {1..4}, id22 : Id, d22 : D, e22 : D) =
     pc21 = 3 \land pc11 = 1 \land set11 \land val11 = e21 \Rightarrow
     e21.D
           checkVal(val11) \searrow multiply(1.0, 1.0):
                             (k1,k2):\{*\}\times\{*\}
           Z(1, id11, val11, false, tails, 4, id21, d21, e21,
              pc12, id12, val12, set12, d12, pc22, id22, d22, e22)
```

In order to obtain reductions: first linearise

```
Z(pc11 : \{1..1\}, id11 : lds, val11 : D, set11 : Bool, d11 : D, pc21 : \{1..4\},
       id21 : Id, d21 : D, e21 : D, pc12 : {1..1}, id12 : Ids, val12 : D,
       set12 : Bool, d12 : D, pc22 : {1..4}, id22 : Id, d22 : D, e22 : D) =
     pc21 = 3 \land pc11 = 1 \land set11 \land val11 = e21 \Rightarrow
     e21.D
           checkVal(val11) \searrow multiply(1.0, 1.0):
                             (k1,k2):\{*\}\times\{*\}
           Z(1, id11, val11, false, tails, 4, id21, d21, e21,
              pc12, id12, val12, set12, d12, pc22, id22, d22, e22)
```

In order to obtain reductions: first linearise

```
Z(pc11 : \{1..1\}, id11 : lds, val11 : D, set11 : Bool, d11 : D, pc21 : \{1..4\},
       id21 : Id, d21 : D, e21 : D, pc12 : {1..1}, id12 : Ids, val12 : D,
       set12 : Bool, d12 : D, pc22 : {1..4}, id22 : Id, d22 : D, e22 : D) =
     pc21 = 3 \land pc11 = 1 \land set11 \land val11 = e21 \Rightarrow
     e21.D
           checkVal(val11) \searrow multiply(1.0, 1.0):
                             (k1,k2):\{*\}\times\{*\}
           Z(1, id11, val11, false, tails, 4, id21, d21, e21,
              pc12, id12, val12, set12, d12, pc22, id22, d22, e22)
```

In order to obtain reductions: first linearise \rightarrow LPPE with 10 parameters and 12 summands

```
Z(val11 : D, set11 : Bool, pc21 : 1..4, d21 : D, e21 : D,
   val12 : D, set12 : Bool, pc22 : 1..4, d22 : D, e22 : D) =
  pc21 = 3 \land set11 \Rightarrow checkVal(val11)  1.0:
                                            k:\{*\}
  Z(heads, false, 4, d21, val11, val12, set12, pc22, d22, e22)
```

Case study

Reductions on the leader election protocol model

In order to obtain reductions: first linearise \rightarrow LPPE with 10 parameters and 12 summands

$$Z(val11: D, set11: Bool, pc21: 1..4, d21: D, e21: D,$$
 $val12: D, set12: Bool, pc22: 1..4, d22: D, e22: D) =$
...
 $pc21 = 3 \land set11 \Rightarrow checkVal(val11) \sum_{k:\{*\}} 1.0:$
 $Z(heads, false, 4, d21, val11, val12, set12, pc22, d22, e22)$

State space: from 127 to 93 states.

prCRL L(P)PEs Linearisation Compositionality Case study Conclusions and Future Work

Conclusions and Future Work

Conclusions / Results

- We developed the process algebra prCRL, incorporating both data and probability.
- We defined a linear format for prCRL, the LPPE, providing the starting point for effective symbolic optimisations and easy state space generation.
- We provided a linearisation algorithm to transform prCRL specifications to LPPEs, proved it correct, and implemented it.

Future work

Applying existing optimisation techniques to LPPEs

- Automating the translation from LPPE to PA
- Branching bisimulation preserving reductions (e.g., confluence reduction)

stroduction prCRL L(P)PEs Linearisation Compositionality Case study **Conclusions and Future Work**

Questions

Questions?