Probabilistic specifications with data types Joost-Pieter Katoen, Jaco van de Pol, Mariëlle Stoelinga, Mark Timmer Formal Methods and Tools – Department of Computer Science – University of Twente

1. Introduction

Dependability of computer systems is becoming more and more important.

Windows blue screen

Ariane 5 crash

A popular solution is model checking; verifying properties of a system by constructing a model and ranging over its state space.

2. Probabilistic model checking

Probabilistic model checking:

- Verifying quantitative properties,
- Using a probabilistic model (e.g., a probabilistic automaton)

Applications:

- Dependability analysis
- Performance analysis

Limitations of previous approaches:

- Susceptible to the state space explosion problem
- Restricted treatment of data

A probabilistic automaton (PA)

3. Our approach; an overview

Main idea: we introduce a process algebra prCRL, incorporating both data types and probabilistic choice. It has a linear format (the LPPE), enabling symbolic optimisations at the language level. Therefore, the state space can be reduced before it is generated.

4. The process algebra prCRL

We introduce the specification language prCRL, give by

$$::= Y(\vec{t}) \mid c \Rightarrow p \mid p + p \mid \sum p \mid a(\vec{t}) \sum f : p$$

5. The linear format: LPPE

We define LPPEs (linear probabilistic process equations) as follows:

$$X(\vec{g}:\vec{G}) = \sum c_1 \Rightarrow a_1(b_1) \sum f_1: X(n_1)$$

x:D x:Dwhere c is a condition, a an atomic action, f a real-valued expression yielding values in [0, 1], and \vec{t} a vector of expressions.

- Based on μ CRL (so data), with additional probabilistic choice
- Operational semantics defined in terms of probabilistic automata
- Minimal set of operators to facilitate formal manipulation
- Syntactic sugar easily definable

Example: $X = \tau \sum_{n:\mathbb{N}} \frac{1}{2^n}$: send(n) · X. This specification repeatedly chooses a natural number *n* with probability $\frac{1}{2^n}$, and then sends the number.

$\vec{e_1}$: $\vec{E_1}$ $\vec{d_1}: \vec{D_1}$ • • • $+\sum_{\vec{d_k}:\vec{D_k}}c_k \Rightarrow a_k(b_k)\sum_{\vec{e_k}:\vec{E_k}}f_k:X(n_k)$ $\vec{d_k}: \vec{D_k}$

Advantages of LPPEs:

- The state space can be generated very easily
- Parallel composition can be applied in a straight-forward manner
- Symbolic optimisations are enabled at the language level

6. Linearisation

Given the following specification in prCRL:

$$X = \tau \sum_{i:\{1,2\}} \frac{i}{3}: \left(\operatorname{send}(i) \cdot X + \sum_{j:\mathbb{N}} j < 10 \Rightarrow \operatorname{send}(j^i) \cdot X \right)$$

The corresponding linear form is: $X(pc: \{1, 2, 3\}, i: \{1, 2\}) =$ $pc = 1 \Rightarrow \tau \sum_{i:\{1,2\}} \frac{i}{3} \colon X(2,i)$

7. Results and Future Work

Results:

- We developed the process algebra prCRL, incorporating both data and probability.
- We defined a linear format for prCRL, the LPPE, providing the starting point for effective symbolic optimisations and easy state space generation.
- We provided a linearisation algorithm to transform prCRL specifications to their corresponding LPPE, proved it correct, and implemented it.

 $pc = 2 \Rightarrow send(i) \cdot X(1, i)$ + $\sum pc = 2 \wedge j < 10 \Rightarrow send(j^i) \cdot X(1, i)$

A graphical representation of X

For more complicated systems the ideas behind linearisation remain the same:

- Introduce a program counter to remember the location in the formula
- Introduce global parameters to remember bound variables

We developed an algorithm to transform any prCRL specification to an LPPE, proved it correct, and implemented it.

Future work:

• Applying existing optimisation techniques, such as constant elimination, liveness analysis and confluence reduction, to LPPEs.

8. Acknowledgments

This research is supported by NWO under grant 612.063.817 (SYRUP) and grant Dn 63-257 (ROCKS), and by the European Union under FP7-ICT-2007-1 grant 214755 (QUASIMODO).

UNIVERSITY OF TWENTE.

Netherlands Organisation for Scientific Research