
Interpreting a Successful Testing Process:
Risk and Actual Coverage

Mariëlle Stoelinga and Mark Timmer

Formal Methods & Tools Group, Department of Computer Science
University of Twente, The Netherlands
{marielle, timmer}@cs.utwente.nl

Abstract—Testing is inherently incomplete; no test suite will
ever be able to test all possible usage scenarios of a system. It
is therefore vital to assess the implication of a system passing
a test suite. This paper quantifies that implication by means
of two distinct, but related, measures: the risk quantifies the
confidence in a system after it passes a test suite, i.e., the
number of faults still expected to be present (weighted by their
severity); the actual coverage quantifies the extent to which
faults have been shown absent, i.e., the fraction of possible
faults that has been covered. We provide evaluation algorithms
that calculate these metrics for a given test suite, as well as
optimisation algorithms that yield the best test suite for a given
optimisation criterion.

I. INTRODUCTION

Software becomes more and more complex, making

thorough testing an indispensable part of the development

process. The U.S. National Institute of Standards and Tech-

nology has assessed that software faults cost the American

economy almost sixty billion dollars annually [1]. More than

a third of these costs could be eliminated if testing occurred

earlier in the development process.

An important fact about testing is that it is inherently

incomplete, since testing everything would require infinitely

many input scenarios. On the other hand, passing a well-

designed test suite does increase the confidence in the

correctness of the tested product. Therefore, it is important to

assess the quality of a test suite. Two fundamental concepts

have been put forward to evaluate test suite quality: (1) cov-
erage metrics determine which portion of the requirements

and/or implementation-under-test has been exercised by the

test suite; (2) risk-based metrics assess the risk of putting

the tested product into operation.

Although existing coverage measures, such as code cov-

erage in white-box testing ([2], [3]) and state and/or tran-

sition coverage in black-box testing ([4], [5], [6]), give an

indication of the quality of a test suite, it is not necessarily

true that higher coverage implies that more, or more severe,

faults are detected. This is because these metrics do not

take into account where in the system faults are most likely

This research has been partially funded by NWO under FOCUS/BRICKS
grant 642.000.505 (MOQS) and by the European Union under grant FP7-
ICT-2007-1 (QUASIMODO).

to occur. Risk-based testing methods do aim at reducing

the expected number of faults, or their severity. However,

these are often informal [7], based on heuristics [8], or

indicate which components should be tested best [9], but

rarely quantify the risk after a successful testing process in

a precise way.

In this paper, we present a framework in which risk

and coverage can be defined, computed and optimised in

a black-box manner, for systems with nondeterminism. Key

properties are a rigorous mathematical treatment based on

solid probabilistic models, and the result that lower risk (or

higher coverage) implies a lower expected number of faults.

Overview. The starting point in our theory is a weighted
fault specification (WFS), consisting of (1) a specification

describing the desired system behaviour as an input-output

labelled transition system (IOLTS), (2) a weight function

describing the severity of faults, (3) an error function de-

scribing the probability that a certain error has been made,

and (4) a failure function describing the probability that

incorrectly implemented behaviour yields a failure. The error

probabilities are assumed to be independent, which is partly

justified by abstracting the actual inputs into equivalence

classes. Still, this assumption is quite strict, but we think

that a thorough understanding of simple models is the

best start when tackling the more complex situation with

dependent probabilities. The failure function is based on

the fact that, due to nondeterminism, observing a correct

response once does not yet imply correctness. That is, a

system might respond differently to the same inputs during

different executions.

From the WFS we derive its underlying probability model,

i.e., a random variable that describes the distribution of

(possibly erroneous) implementations. This allows us to

define risk and actual coverage in an easy and precise way.

Given a WFS, we define the risk of a test suite as the

expected fault weight that remains after this test suite passes.

We show how to construct a test suite of a certain size with

minimal expected risk. We also introduce actual coverage
for a test suite, which quantifies the risk reduction obtained

when an implementation passes it. Whereas risk is based on

faults contained within the entire system, actual coverage

2009 Third IEEE International Symposium on Theoretical Aspects of Software Engineering

978-0-7695-3757-3/09 $25.00 © 2009 IEEE

DOI 10.1109/TASE.2009.26

251

only relates to the part of the system that has been tested.

This matches with the traditional interpretation of coverage.

Our methods refine the theory presented by Brandán

Briones, Brinksma, and Stoelinga [10]. They introduced a

concept we would call potential coverage, as it considers

which faults can be detected during testing. Our measures,

however, take into account the faults that are actually

covered during a test execution, making them more precise.

While error probabilities and failure probabilities are

important ingredients of our framework, techniques for

obtaining them fall outside the scope of this paper. However,

there is extensive literature on factors that determine them.

For instance, estimations of the error probabilities can be

based on the software change history [11]. They can also

be based on McCabe’s cyclomatic complexity number [12],

Halstead’s set of Software Science metrics [13], and re-

quirements volatility [14]. The failure probabilities can be

obtained by applying one of the many analysis techniques

described in [15] and [16]. In practice it might still be

difficult to estimate all the probabilities that are needed,

asking for simplifying approximations. This paper could

then serve as a baseline for sensitivity analysis [17], making

it possible to assess the impact of these simplifications.

Finally, we note that our measures can easily be applied

at higher abstraction levels. For instance, instead of defining

behaviour in terms of basic actions, it could be defined

in terms of function or module calls. A fault weight then

denotes the severity of an error in a certain module, and error

and failure probabilities describe respectively the expected

presence of faults and occurrence of failures in the modules,

providing risk and coverage measures for module testing.

Organisation of the paper. The model is described in Sec-

tion II, risk in Section III, and actual coverage in Section IV.

Section V discusses conclusions and future work.

Due to space limitations, we refer the reader to the

extended version of the current paper [18] for the proofs.

II. THE WFS MODEL

A. Preliminaries and notations

Definition 1 (Preliminaries). Given a set L, the set of all
sequences over L is denoted by L∗, and the set of non-
empty sequences by L+. If σ, ρ ∈ L∗, then σ is a prefix of
ρ (denoted σ � ρ) if there is a σ′ ∈ L∗ such that σσ′ = ρ.
If σ′ ∈ L+, then σ is a proper prefix of ρ (denoted σ � ρ).

We model systems by IOLTSs, which describe behaviour

by means of states and transitions [19]. Transitions are

always caused by either an input action or an output action.

In order to be able to model realistic systems using IOLTSs,

we apply equivalence partitioning. That is, the inputs are

partitioned into equivalence classes such that one input is

representative for all others in its class [3]. This way, the

action set can be kept finite, often even small.

s0s1 s2

δ

10ct? 20ct?

tea! coffee!

xx.tea!

state w perr pfail

s0 40 0.01 0.4
s1 25 0.07 0.5
s2 25 0.05 0.4

(a) A WFS W

fail pass

passfail fail

x20ct?

coffee! xδ tea!

coffee! xδ tea!

(b) A test case t

Figure 1. A WFS and a test case

Definition 2 (IOLTSs). An IOLTS A is a tuple 〈S, s0, L,Δ〉,
where

• S is a finite set of states, with s0 ∈ S the initial state;
• L is a finite set of actions, partitioned into a set LI of

inputs (suffixed by a question mark) and a set LO of
outputs (suffixed by an exclamation mark);

• Δ ⊆ S × L × S is the transition relation, which
is required to be (internally) deterministic. Formally,
(s, a, s′) ∈ Δ ∧ (s, a, s′′) ∈ Δ =⇒ s′ = s′′.

We write Aspec to denote a specification. An IOLTS Aimpl

is a (potentially incorrect) implementation of Aspec if it has
the same alphabet and is input-enabled, i.e., for all s ∈ S
and a ∈ LI, there exists an s′ ∈ S with (s, a, s′) ∈ Δ. The
set of possible implementations of A is denoted by IMPLA.

Definition 3 (Paths and traces). Let A = 〈S, s0, L,Δ〉
be an IOLTS, then a path in A is a finite sequence of
states and actions π = s0a1s1a2 . . . ansn, with s0 = s0

and ∀i ∈ {0, . . . , n − 1} : (si, ai+1, si+1) ∈ Δ. The set of
all paths in A is denoted by pathsA.

Each path π has a trace associated with it, denoted by
trace(π) and given by the sequence of the actions of π.
From the set of all paths in A we can deduce the set of all
traces in A: tracesA = {trace(π) | π ∈ pathsA}.

We use A[σ] for the set of outputs that A can provide as
a response to σ, i.e., A[σ] = {b! ∈ LO | σb! ∈ tracesA}.

A trace σ is implemented incorrected by Aimpl if Aimpl

might respond incorrectly to it, i.e., if Aimpl[σ]
⊆ Aspec[σ].

Example 1. The upper part of Figure 1(a) shows an IOLTS.

Its states are represented by circles, and its initial state by an

extra inner circle. The special action δ (quiescence) is used

to denote that the absence of any output action is required.

An example path in A is (s0 20ct? s2 coffee! s0 10ct? s1

tea! s0). The corresponding trace is (20ct? coffee! 10ct?

tea!). It holds that A[10ct?] = {tea!}. (For readability,

parentheses are often placed around traces and paths.)

B. Weighted Fault Specifications

Since it is uncertain which faults are introduced, devel-

oping an implementation can be described by a random

252

experiment. For each trace, we specify the probability that

an implementation might respond incorrectly; its error prob-
ability. These probabilities are assumed to be independent,

which corresponds to the assumptions made in equivalence

partitioning. There, the assumption is that correctness of a

single input of an equivalence class implies correctness of

all other inputs in its class, whereas it implies nothing about

the correctness of inputs in other equivalence classes.

Since not all failures that can occur at a certain trace will

actually occur when executing that trace once, we specify

a failure function. This function yields, for any trace σ,

the probability that an implementation produces an incorrect

output directly after σ during an arbitrary execution.

Finally, a fault weight is specified for each trace, denoting

the severity of an incorrect implementation with respect to

that trace (or rather, its equivalence class). The higher a fault

weight, the higher the severity.

A specification together with fault weights, error proba-

bilities, and failure probabilities, constitutes a weighted fault
specification.

Definition 4 (WFSs). A WFS (weighted fault specification)

is a tuple W = 〈Aspec, w, perr, pfail〉, with

• Aspec = 〈S, s0, L,Δ〉 an IOLTS;
• w : tracesAspec → R

≥0 a weight function assigning
a fault weight to each trace of Aspec, such that 0 <∑

σ∈tracesAspec
w(σ) < ∞. This constraint allows us

to define a coverage notion relative to the total weight∑
σ∈tracesAspec

w(σ). The fault weight w(σ) denotes
the severity of an erroneous output directly after σ;

• perr : tracesAspec → [0, 1] an error function assigning
to each trace σ of Aspec the probability perr(σ) that an
implementation can provide an incorrect output directly
after σ, i.e., that for an arbitrary Aimpl it holds that
Aimpl[σ]
⊆ Aspec[σ];

• pfail : tracesAspec → [0, 1] a failure function assigning
to each trace σ of Aspec the probability pfail(σ) that
an arbitrary implementation Aimpl with Aimpl[σ]
⊆
Aspec[σ] responds incorrectly to σ.

An implementation of W is an implementation of Aspec.

Since w, perr and pfail have infinite domains, they cannot

be specified directly, and we need a finite way of rep-

resenting them. We will specify perr in an easy way by

simply assigning a value perr(s) to each state s, and defining

perr(σ) = perr(last(σ)), where last(σ) is the last state of the

path associated with σ. Analogously, pfail is defined.

Following [10], w can be specified by truncation, i.e.,

explicitly specifying the fault weight of all traces smaller

than a certain size and defining all others to have fault

weight zero. Alternatively, fault weights can be assigned to

the states and a discount factor λ can be used to determine

the fault weights of traces; that is, w(σ) = w(last(σ)) ·λ|σ|,
where |σ| is the number of transitions of σ. Choosing

0 ≤ λ < 1
m , with m the maximal outdegree of the IOLTS,

this keeps the accumulated fault weight of all traces finite.

Note that it is also sufficient to only apply this restriction to

the derivation for traces larger than some threshold, and use

a different (or no) discount factor for the shorter traces.

Our framework does not rely on the way w, perr, and pfail

are specified, and thus can handle any of the above methods.

Example 2. In all examples we will use λ = 0.9 for short

traces (all traces explicitly used in examples being short). A

specification of w, perr and pfail for the states of the IOLTS

of the previous example is shown in Figure 1(a). Given for

example σ = (20ct? coffee!), consequently w(σ) = 40 ·
0.92 = 32.4. Also, perr(σ) = 0.01 and pfail(σ) = 0.4.

The fault weight of an implementation Aimpl is defined as

the total fault weight of all incorrectly implemented traces.

Definition 5 (Fault weight). Let W = 〈Aspec, w, perr, pfail〉
be a WFS and Aimpl an implementation of W , then the fault

weight of Aimpl is defined by

w(Aimpl) =
∑

σ∈tracesAspec
Aimpl[σ] �⊆Aspec[σ]

w(σ) ,

which is less than infinity by the assumptions on w.

C. Test Cases and Test Suites

To investigate the quality of systems, test cases and suites

are used. Following ioco theory [19], we require test cases

for IOLTSs to be fail fast; they stop directly after observing

a failure. Test cases repeatedly either perform an input action

or observe which output action a system provides.

Definition 6 (Test cases and suites). (i) A test case t for an
IOLTS Aspec = 〈S, s0, L,Δ〉 is a prefix-closed, finite subset
of L∗, such that for all σ ∈ L∗, a? ∈ LI, and a! ∈ LO

• if σa? ∈ t, then ∀b ∈ L : b
= a? =⇒ σb
∈ t;
• if σa! ∈ t, then ∀b! ∈ LO : σb! ∈ t;
• if σ
∈ tracesAspec , then ∀σ′ ∈ L+ : σσ′
∈ t.

A test suite T is a tuple of test cases, denoted 〈t1, . . . , tn〉.
(ii) An execution of t is a trace σ ∈ t such that there is

no ρ ∈ t with σ � ρ, i.e., σ is a maximal element of t. The
set of all executions of t is denoted by exect. An observing

trace of t is a trace that is followed by an observation, i.e.,
a trace σ ∈ t such that ∀b! ∈ LO : σb! ∈ t.

(iii) An execution of a test suite 〈t1, . . . , tn〉 is a sequence
E = 〈σ1, . . . , σn〉, such that σi is an execution of ti for all
i. It is a correct execution if σi ∈ tracesAspec for all i.

(iv) For each test suite execution E = 〈σ1, . . . , σn〉 and
trace σ ∈ L∗, we define obs(σ, E) as the number of times
E observed directly after σ, i.e., obs(σ, E) = |{i | ∀b! ∈
LO : σb! � σi}|. We use obs(σ, T) to denote the number
of times an execution of T might observe after σ, i.e.,
obs(σ, T) = |{i | ∀b! ∈ LO : σb! ∈ ti}|. The set of all
observing traces of T is given by obsT =

⋃
ti∈T {σ ∈ ti |

∀b! ∈ LO : σb! ∈ ti}.

253

Example 3. A test case t for the IOLTS of the previous

examples is shown in Figure 1(b). We have exect = {(20ct?

δ), (20ct? tea!), (20ct? coffee! coffee!), (20ct? coffee! δ),
(20ct? coffee! tea!)}. The set of observing traces of the test

suite T = 〈t〉 is obsT = {(20ct?), (20ct? coffee!)}.

Let T = 〈t, t〉 be a test suite containing t twice. The

maximum number of times an execution of T may observe

after σ = (20ct? coffee!) is obs(σ, T) = 2. However, given

the execution E = 〈(20ct? tea!), (20ct? coffee! δ)〉 there

was only one such observation, so obs(σ, E) = 1.

D. Underlying Probability Model

Since we only care which traces are handled incorrectly,

and we do not care about the incorrect responses, we

partition the possible implementations into classes of imple-

mentations that respond correctly to exactly the same traces.

Definition 7 (Classification relation). Let Aspec be a speci-
fication, and Aimpl1 and Aimpl2 two of its implementations,
then the relation ∼Aspec is defined by

Aimpl1 ∼Aspec Aimpl2 iff

∀σ ∈ tracesAspec : Aimpl1[σ] ⊆ Aspec[σ] ⇔ Aimpl2[σ] ⊆ Aspec[σ] .

We use [[Aimpl]]Aspec to denote the equivalence class of
Aimpl with respect to the relation ∼Aspec , and leave out
the subscript Aspec whenever no confusion arises.

We lift the fault weight of implementations to classes of

implementations by saying that w([[Aimpl]]) = w(Aimpl).
The function perr of a WFS induces a random variable

AW over the equivalence classes of ∼Aspec . Because the

number of possible implementations is uncountable, AW is

a continuous random variable and hence the probability of

every individual implementation is 0.

Definition 8 (AW). Let W = 〈Aspec, w, perr, pfail〉 be a
WFS, then we define AW : Ω → IMPLAspec/∼ to be the
random variable representing the equivalence class of an
arbitrary implementation of W .

We will often use the event that AW = [[Aimpl]] such that

Aimpl[σ] ⊆ Aspec[σ], and denote this by AW [σ] ⊆ Aspec[σ].
Note that by definition P[AW [σ] ⊆ Aspec[σ]] = 1−perr(σ).

For each test suite T , the error function and failure func-

tion also induce a random variable representing the execution

of T . After all, due to nondeterminism the same test suite

might test different traces during different executions.

Definition 9 (RW,T). Let W = 〈Aspec, w, perr, pfail〉 be a
WFS and T = 〈t1, . . . , tn〉 a test suite for Aspec, then we
define RW,T : Ω → exect1 × exect2 × · · · × exectn to be
the random variable representing the result of executing T
against an arbitrary implementation of W .

Note that the distribution of RW,T depends on the distri-

bution of outputs the system provides. However, we do not

need the explicit distribution of RW,T here.

III. RISK

A. Test Evaluation with Respect to Risk

Having defined a formal framework, we can now define

the measures of interest. First of all, when a test suite passes,

we want to estimate the number of faults that remained

undetected. To also incorporate the severity of these faults,

we define the risk of an implementation after passing a test

suite as its expected remaining fault weight, i.e., the expected

number of remaining faults weighted by their severity.

Definition 10 (Risk). Let W = 〈Aspec, w, perr, pfail〉 be a
WFS, T a test suite for Aspec, and E a correct execution of
T . Then, the risk of an arbitrary implementation of W after
executing T yielded E is defined by

riskW (T, E) = E[w(AW) | RW,T = E] .

For this conditional expectation to be defined properly,

P[RW,T = E] has to be nonzero. However, since E is ex-

actly the execution we observed, P[RW,T = E] is obviously

nonzero and consequently no extra restriction is imposed.

Due to nondeterminism, the absence of a failure during

testing does not yet prove its absence. Therefore, to compute

the risk we need the probability that a trace has been

implemented incorrectly even though a test suite passes; its

posterior error probability.

Definition 11 (PEP). Let W = 〈Aspec, w, perr, pfail〉 be a
WFS, T a test suite for Aspec, E a correct execution of T ,
and σ ∈ tracesAspec . Then, the posterior error probability

(PEP) of σ, after T yielded E, is defined by

PEPW (σ, T, E) = P[AW [σ]
⊆ Aspec[σ] | RW,T = E] .

Some executions of E may have performed an input

action after σ, and are therefore not able to detect incorrect

behaviour directly after σ. Hence, to compute the PEP we

have to count the executions reaching σ and observing

afterwards; this is precisely given by obs(σ, E). Keeping

this in mind, the following proposition can be obtained using

Bayes’ formula. A proof of this, and of all other propositions

and theorems of this paper, can be found in [18].

Proposition 1. Let W = 〈Aspec, w, perr, pfail〉 be a WFS,
T a test suite for Aspec, E a correct execution of T , and
σ ∈ tracesAspec . Then

PEPW (σ, T, E)

=
(1 − pfail(σ))obs(σ,E) · perr(σ)

(1 − pfail(σ))obs(σ,E) · perr(σ) + 1 − perr(σ)
.

Since PEPW (σ, T, E) only depends on W , σ and

obs(σ, E), we use PEPW (σ, n) to denote PEPW (σ, T, E)
with obs(σ, E) = n.

It is not difficult to see that the value of riskW (T, E)
in principle can be computed by ranging over all traces of

254

Aspec, summing their fault weight multiplied by their PEP:

riskW (T, E) =
∑

σ∈tracesAspec

w(σ) · PEPW (σ, T, E) .

However, as there are infinitely many traces, this formula

cannot be evaluated in practice (unless truncation was used

to specify w). To solve this, we first compute the initial risk:

riskW (〈〉, 〈〉) =
∑

σ∈tracesAspec

w(σ) · perr(σ) .

In case of discounting this formula can easily be evaluated

using a system of linear equations, very similar to how [10]

computes the total coverage
∑

σ∈L∗ w(σ). Now, for all

traces σ ∈ obsT we subtract the risk reduction that was

obtained by E. Considering that the initial risk of every trace

σ is w(σ) · perr(σ), the following theorem easily follows.

Theorem 1. Let W = 〈Aspec, w, perr, pfail〉 be a WFS, T a
test suite for Aspec, and E a correct execution of T . Then

riskW (T, E) = riskW (〈〉, 〈〉)−∑
σ∈obsT

w(σ) · (perr(σ) − PEPW (σ, T, E)) .

Complexity. The complexity of risk evaluation is in O(n3 +
p log(m)), with n the number of states of Aspec, m the size

of T , and p the size of obsT .

The term n3 comes from calculating riskW (〈〉, 〈〉), which

is shown to be of this complexity in [10]. Then, the sum-

mation yields p summands, each of them requiring some

exponentiations (worst case in O(log(m))).
Example 4. Again consider the WFS of the previous ex-

amples. Assume that discounting was defined such that

riskW (〈〉, 〈〉) = 10.

Let T be the test suite 〈t, t〉, with t the test case of

Figure 1(b). Suppose that T is executed, yielding E =
〈(20ct? tea!), (20ct? coffee! δ)〉. To determine riskW (T, E),
we calculate the risk reduction obtained by E, and sub-

tract this from the initial risk (following Theorem 1). As

risk can only be reduced by observing traces, we only

have to consider the traces that are in the set obsT =
{(20ct?), (20ct? coffee!)}.

Since E observed twice after σ1 = (20ct?), the risk

reduction by this trace is

w(σ1) · (perr(σ1) − PEPW (σ1, 2))

= (25 · 0.9)
(

0.05 − 0.62 · 0.05
0.62 · 0.05 + 1 − 0.05

)
= 0.707.

Since E observed once after σ2 = (20ct? coffee!), the risk

reduction by this trace is

w(σ2) · (perr(σ2) − PEPW (σ2, 1))

= (40 · 0.92)
(

0.01 − 0.61 · 0.01
0.61 · 0.01 + 1 − 0.01

)
= 0.129.

Thus, we obtain

riskW (T, E) = 10 − (0.707 + 0.129) = 9.164 .

B. Estimating Output Behaviour to Predict Risk Reduction

Due to nondeterministic behaviour, risk has been defined

for IOLTSs based on a test suite and an execution. However,

to find an optimal test suite, we need to estimate risk without

knowing the execution in advance. It is therefore necessary

to estimate output behaviour, for which we extend the WFS

model to also include output probabilities pout.

Definition 12 (WFS+). A WFS+ is a tuple W =
〈Aspec, w, perr, pfail, pout〉, where the first four elements con-
stitute a WFS, and pout : tracesAspec ×LO → [0, 1] is a
function assigning to each trace σ and output action a! the
probability pout(σ, a!) that the system provides an a! after
σ, given that no failures occur.

Given a test case t and a trace σ ∈ t, the probability

preach(σ) of actually reaching σ when t is executed (given

that no failures occur) can easily be calculated using pout.

As inputs are chosen by the test case, we set pout(σ, a?) = 1
for all traces σ and input actions a? ∈ LI.

Proposition 2. Let W = 〈Aspec, w, perr, pfail, pout〉 be a
WFS+ and t a test case for Aspec, then preach(σ) =∏n

i=1 pout(a1 . . . ai−1, ai) for all σ = a1a2 . . . an ∈ t.

Now, letting riskW (T) be the random variable represent-

ing the expected risk after a random execution of T , the

following result holds.

Theorem 2. Let W = 〈Aspec, w, perr, pfail, pout〉 be a
WFS+ and T a test suite for Aspec. Then

E[riskW (T)] = riskW (〈〉, 〈〉) −
∑

σ∈obsT

w(σ)·⎛
⎝ obs(σ,T)∑

i=0

(
obs(σ, T)

i

)
· preach(σ)i·

(1 − preach(σ))obs(σ,T)−i · (perr(σ) − PEPW (σ, i))

⎞
⎠ .

Proof (sketch).: To obtain this formula, we started

with Theorem 1 and replaced perr(σ) − PEPW (σ, T, E)
(the error probability reduction for E) by the expected

error probability reduction for an arbitrary execution. This

reduction depends on the number of times the execution

observes after σ, which is by definition between 0 and

obs(σ, T). The probability of observing i times is equal to

obtaining i successes in a binomially distributed experiment

with n = obs(σ, T) and p = preach(σ). Using these

observations, Theorem 1, and the familiar formula for the

binomial distribution, we obtain Theorem 2.

Complexity. The complexity of risk prediction is in O(n3 +

255

fail pass

passfail fail

x20ct? (1.0)

(0.6) coffee! xδ (0.0) tea! (0.4)

(0.0) coffee! xδ (1.0) tea! (0.0)

Figure 2. A test case with output probabilities

pm log(m) + p3), with n the number of states of Aspec, m
the size of T , and p the size of obsT .

Again, the term n3 comes from calculating riskW (〈〉, 〈〉).
Then, the outer summation yields p summands. For each

of these the inner summation yields at most m summands,

each of them requiring some exponentiations (worst case in

O(log(m))). Finally, the binomials
(

s
0

)
, . . . ,

(
s
s

)
are required

for all s ∈ {1, . . . , p}. Since each of them requires at most

2s multiplications, this is in O(p3).
Example 5. Using the WFS W and test suite T of the

previous examples again, we compute E[riskW (T)]. First,

we specify the relevant output probabilities to make it into

a WFS+; see Figure 2. Since we assume that test suite

executions pass (otherwise we improve the system and test

again), the incorrect outputs have been given probability 0.
Now, we can easily calculate preach(20ct?) = 1.0, and

preach(20ct? coffee!) = 1.0 · 0.6 = 0.6. Using Theorem 2,

we obtain the following (the full calculation is in [18]).

E[riskW (T)] = · · · = 10 − 0.707 − 0.136 = 9.157 .

The risk that was calculated in Example 4 is indeed almost

equal to this expected value.

C. Test Optimisation with Respect to Risk
Using risk prediction we can now compute optimal test

suites with respect to risk. Let W = 〈A, w, perr, pfail, pout〉
be a WFS+, T a test suite for A, σ a trace of A, and

assume that obs(σ, T) = n. Since each trace σ contributes

w(σ) · perr(σ) to riskW (〈〉, 〈〉), Theorem 2 implies that the

contribution of σ to the expected risk after T passes is

c(σ, n) = w(σ) ·
n∑

i=0

(
n

i

)
preach(σ)i(1 − preach(σ))n−i·

PEPW (σ, i) .

Note that c(σ, n) only takes into account the contribution of

σ itself, not of its prefixes. It is easy to see that adding a

new test case to T that observes after σ yields an expected

risk reduction (ERR) of r(σ, n) = c(σ, n) − c(σ, n + 1).
Using these insights, we can now construct

T opt-risk
W,k,d = arg min

T=〈t1,...,tk〉
E[riskW (T)] ,

i.e., a test suite of size k with minimal expected risk. As an

extra restriction, we limit the depth of each test case to d to

obtain a finite test suite.

To compute the best test case (i.e., the one having maximal

ERR) of depth d to add to a test suite T , we first derive a

recursive equation for the maximal ERR obtained by such a

test case. To express this as a function of the maximal ERR

of its sub test cases of depth d − 1, we also have to keep

track of the trace seen thus far. We therefore let MT (σ, d′)
denote the maximal ERR to be obtained by a sub test case

of depth d′ with history σ. Note that we are looking for

MT (ε, d).
For d′ = 0, trivially MT (σ, d′) = 0. For an arbitrary

d′ > 0, MT (σ, d′) is calculated inductively by looking

at the first step of the test case. Starting with an input

a? ∈ LI such that σa? ∈ tracesA, no ERR is obtained

directly and we are left with MT (σa?, d′−1). Starting with

observation, an ERR of r(σ, obs(σ, T)) is obtained. Then,

some output b! is provided, leaving us with MT (σb!, d′−1).
As the probability of choosing each individual b! is already

accounted for in c(σ, n), no weighted average is taken.

Formalising these observations, we obtain

MT (σ, d′) =
{

0 if d′ = 0
max (doInput, observe) if d′ > 0 ,

where

doInput = max
a?∈LI

σa?∈tracesA

MT (σa?, d′ − 1) ,

observe = r(σ, obs(σ, T)) +
∑

b!∈LO
σb!∈tracesA

MT (σb!, d′ − 1) .

To construct T opt-risk
W,k,d , we start with T = 〈〉 and com-

pute MT (ε, d): the maximum expected risk reduction to

be obtained by a test case of depth d. Algorithmically,

we start bottom-up by calculating MT (σd−1, 1) for all

σd−1 ∈ tracesA of length d− 1. Based on these values, we

can calculate MT (σd−2, 2) for all σd−2 ∈ tracesA of length

d− 2. Working our way up, we arrive at MT (ε, d). During

the calculations we record for each MT (ρ, l) whether it was

obtained by observation or an input (and which one).

Now, the first step of the best test case t1 is the action

(or observation) that was chosen to maximise MT (ε, d).
Then, suppose that a ∈ L was performed, we do an input or

observe, according to which was chosen for MT (a, d− 1),
and so on, until depth d has been reached.

After having set T = {t1}, the best test case t2 to add

to T can be found by repeating the procedure described

above. Since only a part of the state space changes, this can

be calculated efficiently. We just continue in this way until

|T | = k and then set T opt-risk
W,k,d = T .

In [18] the algorithm is formalised and proved correct.

256

Complexity. Note that the above method is very simi-

lar to history-dependent backwards induction, known from

Markov decision theory [20]. The complexity of finding each

test case to add to T is therefore exponential in its depth,

and because of history-dependence cannot be improved to

polynomial complexity.

Example 6. Using the WFS+ W of the previous examples

once more, we calculate the optimal test suite T opt-risk
W,2,3 of

size 2 and depth 3. We still assume preach(20ct? coffee!) =
0.6 and preach(20ct? tea!) = 0.4, and a discount rate of

λ = 0.9 for short traces.

We first calculate MT (σ2, 1) for all traces of length 2:

MT (δ δ, 1) = max
(
MT (δ δ 10ct?, 0),MT (δ δ 20ct?, 0),

r(δ δ, 0) + MT (δ δ δ, 0)
)

= max(0, 0, 0.129) = 0.129

MT (δ 10ct?, 1) = · · · = 0.683

MT (δ 20ct?, 1) = · · · = 0.393

MT (10ct? tea!, 1) = · · · = 0.129

MT (20ct? tea!, 1) = · · · = 0.052

MT (20ct? coffee!, 1) = · · · = 0.077

Note that this confirms the intuition that it is best to observe

in the final step, since performing an input has no effect on

the risk. Continuing, we calculate

MT (δ, 2) = max
(
MT (δ 10ct?, 1),MT (δ 20ct?, 1),

r(δ, 0) + MT (δ δ, 1)
)

= max(0.683, 0.393, 0.143 + 0.129) = 0.683

MT (10ct?, 2) = max
(
r(10ct?, 0) + MT (10ct? tea!, 1)

)
= max(0.759 + 0.129) = 0.889

MT (20ct?, 2) = max
(
r(20ct?, 0) + MT (20ct? tea!, 1)

+ MT (20ct? coffee!, 1)
)

= max(0.436 + 0.052 + 0.077) = 0.565

MT (ε, 3) = max
(
MT (10ct?, 2),MT (20ct?, 2),

r(ε, 0) + MT (δ, 2)
)

= max(0.889, 0.565, 0.159 + 0.683) = 0.889

Apparently, the maximum expected risk reduction that can

be obtained by a test case of depth 3 is 0.889. Based on the

calculations above, we can deduce the corresponding test

case, which is depicted in Figure 3(a).

To find the second test case to include in T , we per-

form the same calculations, only now using r(10ct?, 1) and

r(10ct? tea!, 1) instead of r(10ct?, 0) and r(10ct? tea!, 0),
since obs(σ, T) is now 1 for them. In fact, only a part of

the calculations has to be repeated.

We find the test case shown in Figure 3(b), which yields

an additional expected risk reduction of 0.842. As this

calculation uses the fact that the first test case was already

present, the values can just be added to find that the optimal

fail fail

passfail fail

x10ct?

coffee! xδ tea!

coffee! xδ tea!

(a) The first test case

fail fail

pass fail pass

x10ct?

coffee! xδ tea!

coffee! xδ tea!

(b) The second test case

Figure 3. An optimal test suite

test suite of size two has an expected risk reduction of

0.889 + 0.842 = 1.731.

IV. ACTUAL COVERAGE

Whereas risk gives us information about the entire system,

coverage only relates to the part of a system we tested.

Basically, we define the absolute actual coverage
(absCov) of a test suite T as the accumulated fault weight of

the traces that are known to be implemented correctly after

T passes. However, due to nondeterminism we often only

reduce the probability of the presence of faults, so we need

a more precise notion. We therefore introduce relative error
probability reduction (REPR) as the extent to which the

error probability of a trace decreases as a result of passing

a test suite. Then, absCov is defined as the sum of all fault

weights, each weighted by the corresponding REPR.

To assess the quality of a test suite, we calculate its

absolute actual coverage relative to the total amount of fault

weight that could potentially be present in the system. This

measure will be called its relative actual coverage (relCov).

(See [10] for an algorithm to compute totCov efficiently).

Definition 13 (Coverage measures). Let W =
〈Aspec, w, perr, pfail〉 be a WFS, T a test suite for
Aspec, and E a correct execution of T . Then we define

REPRW (σ, T, E) =
perr(σ) − PEPW (σ, T, E)

perr(σ)
;

absCovW (T, E) =
∑

σ∈tracesAspec

w(σ) · REPRW (σ, T, E) ;

totCovW =
∑

σ∈tracesAspec

w(σ) ;

relCovW (T) =
absCovW (T)

totCovW
.

Note that since weight functions never sum up to zero or

infinity, relative actual coverage is properly defined.

Using Proposition 1, the following result can easily be

obtained, providing a formula for computing actual cover-

age. Note that it reduced to a finite sum, since the traces not

in obsT have no REPR and can therefore be omitted.

257

Theorem 3. Let W = 〈Aspec, w, perr, pfail〉 be a WFS, T a
test suite for Aspec, and E a correct execution of T . Then

absCovW (T, E) =
∑

σ∈obsT

w(σ)·
(

1 − (1 − pfail(σ))obs(σ,E)

1 − perr(σ) + (1 − pfail(σ))obs(σ,E) · perr(σ)

)
.

Optimisation with respect to actual coverage can be done

in exactly the same way as optimisation with respect to risk,

only using expected coverage increase instead of expected

risk reduction.

V. CONCLUSIONS AND FUTURE WORK

While testing is an important part of today’s software

development process, little research has been devoted to

the interpretation of a successful testing process. In this

paper, we introduced a weighted fault specification (WFS)

to describe the required behaviour of a system and the

estimation of its probabilistic behaviour. Based on such a

WFS, we presented two measures: risk and actual coverage.

Risk denotes the confidence in the system after testing is

successful, whereas actual coverage denotes how much was

tested.

We presented a method to compute the risk of a system

after it successfully passes a test suite, as well as a way

to calculate the quality of a given test suite with respect

to risk. We also gave an optimisation strategy enabling the

tester to obtain a test suite of a given size that will obtain

minimal risk. All are easily adaptable to work with actual

coverage. Although we made some strict assumptions on

error independence, we think that a thorough understanding

of simple models is a useful start when tackling these

complicated problems.

Our work gives rise to several directions for future re-

search. First, it is crucial to validate our framework by

developing tool support and performing case studies. Sec-

ond, it seems useful to include fault dependencies in our

model. Third, the possibilities of on-the-fly test derivations

(e.g., as performed by the tool TorX [21]) based on risk or

actual coverage could be investigated. This may yield a tool

that, during testing, calculates probabilities and decides how

to test optimally. Finally, our framework may be used to

study the sensitivity of the probabilities, validating potential

simplifying approximations for risk and actual coverage.

REFERENCES

[1] M. Newman, “Software errors cost U.S. economy 59.5 billion
annually, NIST assesses technical needs of industry to im-
prove software-testing,” Press Release, http://www.nist.gov/
public affairs/releases/n02-10.htm, 2002.

[2] T. Ball, “A Theory of Predicate-Complete Test Coverage
and Generation,” in Proceedings of the 3rd International
Symposium on Formal Methods for Components and Objects
(FMCO ’04), ser. Lecture Notes in Computer Science, vol.
3657. Springer, 2004, pp. 1–22.

[3] G. J. Myers, C. Sandler, T. Badgett, and T. M. Thomas, The
Art of Software Testing, Second Edition. Wiley, 2004.

[4] D. Lee and M. Yannakakis, “Principles and methods of testing
finite state machines - a survey,” Proceedings of the IEEE,
vol. 84, no. 8, pp. 1090–1123, 1996.

[5] L. Nachmanson, M. Veanes, W. Schulte, N. Tillmann, and
W. Grieskamp, “Optimal strategies for testing nondeterminis-
tic systems,” SIGSOFT Software Engineering Notes, vol. 29,
no. 4, pp. 55–64, 2004.

[6] H. Ural, “Formal methods for test sequence generation,”
Computer Communications, vol. 15, no. 5, pp. 311–325, 1992.

[7] F. Redmill, “Exploring risk-based testing and its implica-
tions,” Software Testing, Verification and Reliability, vol. 14,
no. 1, pp. 3–15, 2004.

[8] J. Bach, “Heuristic risk-based testing,” Software Testing and
Quality Engineering Magazine, November/December 1999.

[9] S. Amland, “Risk-based testing: risk analysis fundamentals
and metrics for software testing including a financial appli-
cation case study,” Journal of Systems and Software, vol. 53,
no. 3, pp. 287–295, 2000.

[10] L. Brandán Briones, E. Brinksma, and M. I. A. Stoelinga, “A
semantic framework for test coverage,” in Proceedings of the
4th International Symposium on Automated Technology for
Verification and Analysis (ATVA ’06), ser. Lecture Notes in
Computer Science, vol. 4218. Springer, 2006, pp. 399–414.

[11] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting
fault incidence using software change history,” IEEE Trans-
actions on Software Engineering, vol. 26, no. 7, pp. 653–661,
2000.

[12] T. J. McCabe, “A complexity measure,” IEEE Transactions
on Software Engineering, vol. 2, no. 4, pp. 308–320, 1976.

[13] M. H. Halstead, Elements of Software Science. Elsevier,
1977.

[14] Y. K. Malaiya and J. Denton, “Requirements volatility and
defect density,” in Proceedings of the 10th International
Symposium on Software Reliability Engineering (ISSRE ’99).
IEEE, 1999, pp. 285–294.

[15] K. W. Miller, L. J. Morell, R. E. Noonan, S. K. Park, D. M.
Nicol, B. W. Murrill, and M. Voas, “Estimating the probability
of failure when testing reveals no failures,” IEEE Transactions
on Software Engineering, vol. 18, no. 1, pp. 33–43, 1992.

[16] J. Voas, L. Morell, and K. Miller, “Predicting where faults can
hide from testing,” IEEE Software, vol. 8, no. 2, pp. 41–48,
1991.

[17] A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto, Sen-
sitivity Analysis in Practice: A Guide to Assessing Scientific
Models. Halsted, 2004.

[18] M. I. A. Stoelinga and M. Timmer, “Interpreting a successful
testing process: risk and actual coverage (extended version),”
CTIT, University of Twente, Tech. Rep. TR-CTIT-09-17,
2009.

[19] G. J. Tretmans, “Test Generation with Inputs, Outputs
and Repetitive Quiescence,” Software—Concepts and Tools,
vol. 17, no. 3, pp. 103–120, 1996.

[20] M. L. Puterman, Markov decision processes: discrete stochas-
tic dynamic programming. Wiley, 2005.

[21] A. Belinfante, J. Feenstra, R. G. de Vries, J. Tretmans,
N. Goga, L. M. G. Feijs, S. Mauw, and L. Heerink, “Formal
test automation: A simple experiment,” in Proceedings of
the 12th International Workshop on Testing Communicating
Systems (IWTCS ’99), ser. IFIP Conference Proceedings, vol.
147. Kluwer, 1999, pp. 179–196.

258

