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When it is not in our power to deter-
mine what is true, we ought to follow
what is most probable.

- René Descartes



Abstract

This thesis proposes a new notion of semantic coverage in formal
testing: actual coverage. It is defined for test case and test suite
executions, as well as for sequences of their executions. A fault is
considered to be completely covered if an execution showed its pres-
ence, and it is considered partly covered if an execution increased
the confidence in its absence.
Actual coverage can be used to evaluate a test process after it has
taken place, but we also describe how to predict actual coverage
in advance. To support these estimations, a probabilistic execution
model is introduced. We derive efficient formulae for both the eval-
uation and the prediction of actual coverage, making tool support
feasible.
We show that for an infinite number of executions our measure coin-
cides with an existing notion of semantic coverage, called potential
coverage. This notion, however, does not deal with the fact that in
practice only a finite number of executions will be performed. With
actual coverage it is possible to predict the actual coverage of any
given number of test case or test suite executions.
An extensive detailed example is provided to demonstrate the ap-
plicability of our measure.
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Chapter 1
Introduction

In the last decades, software has become more and more complex, making it
more and more important to perform testing ; the process of finding faults in an
already implemented system, investigating its quality and reducing the risk of
unexpected behaviour.

As indicated by several papers, such as [ZE00] and [SLK01], about half of a
software project’s budget is spent on testing. Still, the United States National
Institute of Standards and Technology has assessed that software errors cost
the U.S. economy about sixty billion dollars annually [New02]. The institute
estimated that more than a third of these costs could be eliminated if testing
occurred earlier in the software development process.

It should therefore come as no surprise that the theory of testing has become
an intensively studied academic subject. Several problems have been (partially)
addressed, such as test case generation (e.g. using TorX [BFS05]), languages
for describing tests (e.g. TTCN [PM92]), and formalisms for describing systems
(e.g. LOTOS [BB87]). An extensive overview can be found in the famous book
of Myers [Mye79] [MSBT04].

The fact that testing is still the topic of many international scientific con-
ferences (e.g. TESTCOM, FATES, QEST, FASE, CONCUR) clearly indicates
that a lot of work yet has to be done.

Since practically every system can potentially perform an infinite number
of different sequences (traces) of actions, testing is unfortunately inherently
incomplete; no test suite will be able to find every possible fault in a non-trivial
system. This insight is not very recent, as it was already captured by Dijkstra
in a famous quote almost forty years ago: “Program testing can only be used to
show the presence of bugs, but never to show their absence” [Dij70]. Although
the purpose of this statement was to direct towards formal verification, we also
consider it a starting point for the quest to estimate test suite quality.

The inherent incompleteness of test suites brings us to the main topic of
this research project: test coverage. Since no test suite can be ‘perfect’, it is
important to be able to quantitatively assess how many faults we expect it to
find. Also, we want to be able to derive afterwards how useful an execution or a
sequence of executions has been. For this purpose, the notion of actual coverage
is introduced.

1



2 Chapter 1. Introduction

We apply methods from the area of model-based testing, which uses formal
models such as labeled transition systems to automatically generate, execute
and evaluate test suites.

Organisation of this chapter
First, we explain the motivation behind our contribution to the field of test
coverage in Section 1.1. Then, Section 1.2 provides an overview of this thesis,
discussing the main results. Finally, Section 1.3 puts our work in perspective
by discussing related work.

1.1 Motivation

Most papers applying test coverage define it as a quantitative measure to esti-
mate the quality of a test suite. It is often based on certain system character-
istics, and the extent to which they are ‘covered’ by a test suite.

Almost all definitions of coverage take a syntactic point of view. They are
for instance based on the number of statements executed by a test case, or
the number of branches taken [MSBT04]. A major disadvantage of using these
notions is that testing systems that behave identically, but are implemented
differently, might result in different coverage values. We might even get different
coverage values if we replace the specification by a semantically equivalent, but
syntactically different one. This is undesirable, since it is more important to
know that most of the behaviour of a system is correct, than to know that most
of its syntactic constructs are correct. For instance, replacing the statement
‘i = i + 2;’ by ‘i++; i++;’ has an impact on the statement coverage a test
case yields, even though the amount of functionality that is tested for correctness
does not change.

Not many definitions of coverage from a semantic point of view have been
provided. However, a start has been made in a paper by Brandán Briones,
Brinksma and Stoelinga [BBS06], as part of the PhD thesis of Brandán Briones
[Bri07]. This work has already laid down a semantic framework for test compar-
ison, where coverage of a test case is defined as the number of potential faults
that are potentially detected, weighted by the severity of each fault. There-
fore, the notion of coverage introduced in this work will from now on be called
potential coverage. This coverage measure actually deals with the observable
behaviour of a system, not being concerned by the syntactic properties of the
implementation or the specification.

1.1.1 The intuition behind potential coverage

The starting point in [BBS06] is the testing framework of [Tre96]. It is based
on input-output labeled transition systems (IOLTSs, shortened to LTSs) and
a conformance relation called ioco. The LTSs contain both input actions and
output actions, explicitly making a distinction between actions the user provides
and actions the system provides. Furthermore, a special output action δ denotes
quiescence. Quiescence means that the system does not produce any output
actions until the user provides an input action. The conformance relation ioco
basically states that an implementation is correct if it can always handle every
possible input action, and it can never produce an unexpected output action.
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fail
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Figure 1.1: An example test case

Since δ is considered as an output action, the unexpected absence of all output
actions is also considered erroneous.

[BBS06] introduces weighted fault models, which assign an error weight (in
R≥0) to each trace. As an example, consider the test case shown in Figure 1.1.
We show the error weights of all the erroneous traces that can potentially be
detected by this test case. For example, if the system produces a c! after an
a? has been provided by the user, that will be considered incorrect. Therefore,
we assign a positive error weight (in this case 7), indicating the severity of the
fault. All correct traces receive an error weight of 0.

The erroneous traces this test case can observe are a? e! b? d!, a? e! b? c!,
a? d! b? e!, a? d! b? d!, and a? c!. The measure of potential coverage now
states that the absolute coverage of this test case is 7 + 4 + 6 + 9 + 2 = 28
(the accumulated weight of its erroneous traces). When this value is divided
by the total accumulated weight of all erroneous traces that could occur in the
system (the total coverage), this is called the relative coverage of the test case.
Assuming that the total coverage is 200, the relative coverage of the test case
under consideration is 14 percent.

1.1.2 The limitations of potential coverage

As explained above, potential coverage indicates which faults can potentially
be detected by a test case. If a test case is executed once, however, not all
erroneous traces can actually be shown present or absent [HT96]. Consider the
test case of Figure 1.1 again. After the input action a? one of the outputs e!, c!
or d! will occur. After e! occurs, there is no way to know if a fault might occur
in traces starting with a? d!. Therefore, not all the traces that can potentially
be covered by this test case are actually covered in an execution.

Because of this discrepancy, it is not possible to use potential coverage to
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predict how many faults will be covered when executing a test case or test suite
a certain number of times. After all, we would need a model of the probabilistic
behaviour of the system. If for example the probability of the system choosing
an e! is much larger than the probability of the system choosing a d!, we expect
to need more executions before all faults are covered than if the probabilities
were equal.

To solve these limitations, a new notion for coverage is introduced here:
actual coverage.

Moreover, the framework as it is restricts itself to deterministic fault au-
tomata. Therefore, a system that is described by a nondeterministic LTS should
first be transformed into an equivalent deterministic LTS, before a fault automa-
ton can be made to describe the severity of its erroneous traces. This project
aims at extending the framework by also allowing nondeterministic fault au-
tomata, such that error weights can directly be assigned to erroneous traces in
the nondeterministic LTS.

1.2 Overview and results

This thesis is divided into 10 chapters. Chapter 2 first gives an overview of the
framework developed in [BBS06]. Then, in Chapter 3 we explain in detail how
the methods of Chapter 2 can be used for nondeterministic system descriptions.
It turns out that this extension is not possible considering the current definition
of quiescence. We therefore propose an extended notion of quiescence.

Chapter 4 explains the motivation behind actual coverage, and provides
an intuition for its definition. This chapter also informally introduces the in-
gredients of our theoretical framework on actual coverage, which are formally
discussed in Chapter 5 through 8.

Chapter 9 uses a detailed example to illustrate all the concepts of our frame-
work. Several specifications and calculations are provided, giving a feeling for
the process of applying our methods. Obviously, many of the calculations per-
formed here by hand should in practice be performed by a tool.

Chapter 10 concludes this thesis by evaluating the developed methods. Also,
it gives directions for future work.

1.2.1 Main results

The main results of this thesis are summarised as follows.

• We extend the existing framework for potential coverage from [BBS06],
explaining in detail how to deal with nondeterministic systems. The notion
of quiescence is updated to support its preservation under determinisation.
(Chapter 3)

• We develop a new notion of coverage: actual coverage. It deals not only
with test cases or test suites, but also with the number of executions
planned and the probabilistic behaviour of the system. (Chapter 4)

• We present probabilistic execution models (PEMs), containing the proba-
bilities necessary to calculate actual coverage. We introduce probabilistic
fault automata (PFAs) to syntactically specify PEMs. We also provide
guidelines for obtaining the probabilities. (Chapter 5)
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• We formally define the actual coverage of a given execution or sequence
of executions. Coverage probabilities are introduced to take into account
how certain we are of the absence of faults. (Chapter 6)

• We provide an efficient calculation to predict the actual coverage of test
cases. (Chapter 7)

• We generalise all the methods above to test suites. (Chapter 8)

Combining the results described above, we obtain a framework that describes
the expected behaviour of a system and the expected outcome of test case and
test suite executions. The framework is useful in test evaluation, but also in test
selection. Since the most important properties can be calculated in polynomial
time (approximately based on the number of times the test case is to be executed
multiplied by the number of possible outcomes), it seems feasible to implement
the theory in a tool.

1.3 Related work

In the past decades many papers on test coverage have been published. Several
different definitions have been used, each with its own properties. According to
[WS00], coverage is generally defined as ‘the number of faults detected, divided
by the number of potential faults’. This means that a test case execution that
does not detect any errors has by definition no coverage. Since observing the
absence of faults also increases our confidence in a system, this definition does
not satisfy our needs.

The most important related work for this project is [BBS06], since it de-
scribes the framework this project extends. Moreover, since the framework is
based on ioco testing, an important paper is [Tre96], defining that formalism.

In the following, we will first discuss the most important related work on
code coverage. Then, we discuss related work concerning specification coverage.
Finally, we provide directions towards interesting work on probabilistic test
approaches.

1.3.1 Code coverage

Most papers on coverage describe a form of code coverage, defining coverage
based on the implementation. An excellent overview can be found in [Mye79],
or the more recent edition [MSBT04]. Some extensions to the traditional ap-
proached were proposed in [Bal05]. Here we give a short summary of some code
coverage criteria.

Statement coverage is the weakest form of code coverage. It demands all
statements to be executed at least once. Decision coverage is already a bit
stronger. It requires a test suite to contain enough tests such that each decision
evaluates at least once to true and once to false. The strongest code coverage
criterion is path coverage. It requires that all possible sequences of statements
are included in a test suite. Since the occurrence of loops often results in an
infinite number of paths, path coverage is not very realistic in practice.
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1.3.2 Specification coverage

The aforementioned methods are, unfortunately, not invariant under replace-
ment of a system with a semantically equivalent one. Therefore, besides code
coverage, also specification coverage has been described extensively in litera-
ture. Techniques such as equivalence partitioning and boundary value analysis
are well-known, and are described in every text book on testing. They are,
however, by far not sufficient to completely test a system.

For testing techniques applying finite state machines, a good overview is
provided by [Ura92]. Furthermore, many details on the principles of testing
finite state machines can be found in [LY96] and [Yan91]. Often, a distinction
is made between state coverage and transition coverage.

State coverage makes sure that every state of the specification is visited by
a test case at least once. Since finite state machines have a finite number of
states, such a test suite is feasible. Transition coverage extends state coverage by
not only requiring every state to occur in a test suite, but also every transition
between them.

Although these coverage measures are based on the specification instead
of the implementation, they are still of a syntactic nature. Coverage measures
depending on the number of states that were visited or the number of transitions
that were taken are focused on these syntactic issues, instead of the actual
behaviour the system exhibits. Equivalent specifications might therefore yield
different coverage values.

Furthermore, although finite state machines are a useful way to model sys-
tems, they have several disadvantages. First of all, nondeterminism is not al-
lowed. This does not restrict their expressiveness, but it does restrict their
ease of use. Also, it is not possible to specify several output actions occurring
sequentially, since the formalism restricts us to an alternation between inputs
and outputs. The solution is to consider a more modern formalism to express
system behaviour formally: labeled transition systems. This formalism is also
used in this thesis.

In papers discussing testing based on labeled transition system, coverage is
often forgotten, ignored or ‘solved’ by making assumptions and restrictions that
result in complete coverage [TPB95]. Since test suites for systems with infinite
behaviour are inherently incomplete, this does not reflect reality very well.

An important tool in the area of model-based testing is Microsoft’s Spec Ex-
plorer. Instead of labeled transition systems it uses model programs: a machine-
executable specification formalism. According to [CGN+05], coverage metrics
are especially difficult in case of nondeterminism and have therefore not yet been
implemented. In [NVS+04] Markov Decision Processes are applied to optimize
coverage when deriving test suites, but since coverage is defined based on final
states these methods are syntactic as well.

1.3.3 Probabilistic approaches to testing

The use of probability in testing was already a subject of research more than
twenty years ago. In 1985, [Wun85] described a tool used to estimate the detec-
tion probability for each fault in a digital circuit. These probabilities were used
to describe the testability of circuits, and to predict how many random tests
had to be generated to achieve some required fault coverage.
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More recent approaches regarding software conformance testing apply formal
methods [Tre96]. In [HT96], probabilities were added to the work of [Tre96],
to describe how a system behaves under a certain test case. This paper argues
that it is difficult, or even impossible, to be sure that all possible outcomes
have really been observed. Based on this understanding, it proposes to consider
test executions in a probabilistic setting. Furthermore, it includes the gravity
of errors in implementations by assigning an error weight to each implemen-
tation. This differs significantly from the approach taken in [BBS06], where
error weights were used to denote the severity of individual faults. Probabilities
are assigned to implementations as well, indicating how likely the occurrence of
each implementation is. Especially the probabilistic approach of [HT96] shows
resemblances to our work, although it is much less thorough.

Based on [HT96], [Gog03] introduces a probabilistic coverage for on-the-fly
test generation algorithms. Its coverage measure is very different from the mea-
sure we introduce. In [Gog03], coverage is defined as ‘the weighted probability
of being able to reject an implementation divided by the probability that an
erroneous implementation occurs’. The main disadvantage of this notion is that
it does not take into account how many faults are or might be detected during
the testing process. Assuming that for complex systems every implementation
has at least one detectable fault, they would always achieve 100% coverage.

A side-step from probabilistic testing is risk-based testing. It assessing
the risk associated which each fault, and aims at detecting the more risky
faults [Aml00]. We include this approach as an optional extension to our no-
tions.





Chapter 2
Preliminaries

The main focus of this thesis is to extend and improve the semantic framework
for test coverage introduced in [BBS06]. Therefore, this chapter will discuss this
previous work. Furthermore, we introduce the basic mathematical notations
that will be used in the subsequent chapters.

The framework of [BBS06] is based on input-output labeled transition sys-
tem, and test cases for them constructed based on ioco theory. Weighted fault
models are introduced as semantic structures for assigning error weights to er-
roneous traces. Using these models, coverage measures are defined.

To describe weighted fault models in a syntactically feasible way, fault au-
tomata have been defined. Two mechanisms have been provided for converting
these fault automata into finite weighted fault models: a mechanism based on
finite depths and another based on discounting.

Organisation of this chapter
First, Section 2.1 introduces some basic notation. Then, input-output labeled
transition systems are covered in Section 2.2, followed by test cases for them in
Section 2.3. Section 2.4 introduces weighted fault models, as well as coverage
measures for test cases based on them. Finally, fault automata are covered in
Section 2.5, and their two conversion mechanisms in Section 2.6.

2.1 Basic notations

Definition 2.1. Let L be any set, then a trace over L is a finite sequence of
elements from L. Traces will be denoted by their elements, separated by white
spaces. The set of all traces over L is denoted by L∗. When a trace does not
contain any elements, it is called the empty trace and denoted by ε. For any
trace σ, its length |σ| is defined as the number of elements it consists of. Finally,
L+ = L∗ \ {ε} is the set of all non-empty traces.

When describing traces, we use the notational convention that ai . . . ai−1 = ε,
ai . . . ai = ai, and a0 . . . a2 = a0a1a2, etcetera.

The notation P(S) will be used to denote the powerset of a set S.

Example 2.2. Considering the alphabet L = {a, b, c, d}, we can identify among

9



10 Chapter 2. Preliminaries

others the traces a d b c, b a, b c b d and ε. If σ = a a d, then |σ| = 3.
Furthermore, although ε ∈ L∗, we have ε 6∈ L+.

Definition 2.3. Let σ, ρ ∈ L∗ be traces, then σ is a prefix of ρ (denoted σ v ρ)
if there exists a σ′ ∈ L∗ such that σσ′ = ρ. When σ′ ∈ L+, σ is called a proper
prefix of ρ (denoted σ @ ρ).

A set of traces T is prefix-closed if for each trace σ ∈ T , also all its prefixes
are contained in T .

Example 2.4. The set T = {a b, a b c, a b c d} of traces over L = {a, b, c, d} is
not prefix-closed. After all, a is not contained in T , even though it is a prefix
of all the other traces in T . Also, T does not contain the trace ε, which is by
definition required to be in all non-empty prefix-closed trace sets. If we would
add these two traces to T , it would become prefix-closed.

Definition 2.5. Let T be a set a traces, then a trace σ ∈ T is maximal in T if
there does not exist a trace σ′ ∈ T such that σ @ σ′.

The next definition provides the function Distr, which maps any sample
space S on all possible probability distributions over S.

Definition 2.6. Let S be a set, then Distr(S) is the set containing all functions
p : S → R≥0 such that ∑

s∈S
p(s) = 1

Finally, we define the membership of a tuple.

Definition 2.7. Let E = (e1, e2, . . . , en) be a tuple. Then, e ∈ E is used as a
shorthand notation for ∃ei : ei = e.

2.2 Input-output labeled transition systems

The semantic framework uses input-output labeled transition systems (IOLTSs,
shortened to LTSs) for specifying the behaviour of systems, following ioco test-
ing theory [Tre96]. We first define LTSs in terms of sets and relations, and then
define paths and traces in LTSs.

2.2.1 The basics

An input-output labeled transition system specifies the behaviour of a system
in terms of states and transitions. Transitions from one state to another are
always caused by either an input action (often explained as the user pressing a
button) or an output action (often explained as the system giving information
or goods to the user).

Definition 2.8. An input-output labeled transition system A is given by a tuple
〈S, s0, L,∆〉, where

- S is a finite set of states;
- s0 is the initial state;
- L is a finite set of actions, partitioned into a set LI of input actions and

a set LO of output actions (L = LI ∪ LO and LI ∩ LO = ∅);
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- ∆ ⊆ S×L×S is the transition relation, which is required to be determin-
istic, i.e. if (s, a, s′) ∈ ∆ and (s, a, s′′) ∈ ∆, then s′ = s′′.

The components of A are denoted by SA, s0A, LA, and ∆A. When the context
makes it clear that a component belongs to A, the subscript is omitted.

An element a ∈ L is often denoted a? if it is an input action, and a! if it is
an output action.

LTSs modeling implementations are always assumed to be input-enabled,
meaning that all inputs can be provided from every state of the system.

Definition 2.9. Let ∆ ⊆ S × L× S be a transition relation with L partitioned
into LI and LO, and s ∈ S, then

- ∆I is the restriction of ∆ to S × LI × S
- ∆O is the restriction of ∆ to S × LO × S
- ∆(s) = {(a, s′) | (s, a, s′) ∈ ∆}
- ∆I(s) = {(a, s′) | (s, a, s′) ∈ ∆I}
- ∆O(s) = {(a, s′) | (s, a, s′) ∈ ∆O}

Example 2.10. Suppose we have a coffee machine providing coffee for 20 cents,
and tea for 10 cents. The machine only accepts 10 cent coins and 20 cent coins.
When a 10 cent coin is inserted, the machine does not wait for a second coin
but immediately assumes the user wants tea. Inserting a 20 cent coin results in
a cup of coffee.

Figure 2.1(a) shows the LTS A specifying the behaviour of this coffee ma-
chine. Formally, A = 〈S, s0, L,∆〉, with

S = {s0, s1, s2}
s0 = s0

L = LI ∪ LO,with LI = {10ct?, 20ct?} and LO = {coffee!, tea!}
∆ = {(s0, 10ct?, s2), (s0, 20ct?, s1), (s1, coffee!, s0), (s2, tea!, s0)}

Applying Definition 2.9, we have

∆I = {(s0, 10ct?, s2), (s0, 20ct?, s1)}
∆O = {(s1, coffee!, s0), (s2, tea!, s0)}
∆(s0) = {(10ct?, s2), (20ct?, s1)}

s0s1 s2

20ct? 10ct?

coffee! tea!

(a) The LTS

s0s1 s2

20ct? 10ct?

coffee! tea!

δ

(b) The LTS including quiescence

Figure 2.1: An LTS A of a coffee machine
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Sometimes it is convenient to incorporate quiescence (the absence of out-
puts). To do this, we add a transition labeled δ from each quiescent state s
(∆O(s) = ∅) to itself. We define δ to be an output action. Figure 2.1(b) shows
the resulting LTS for Example 2.10.

Definition 2.11. We use a shorthand notation for an LTS almost equivalent
to another, differing only in the start state. Let A = 〈S, s0, L,∆〉 be an LTS
and s ∈ S, then A[s] = 〈S, s, L,∆〉.

2.2.2 Traces and paths

Since LTSs define a structure with states and transitions between them, we can
speak of paths within this structure. A path is a connected sequence of transi-
tions in an LTS, specified by the states visited and the actions of the transitions
that are taken. Such a path is based on a trace over the alphabet of the LTS;
a list of actions to be processed (or produced) by the system consecutively.

A state is defined reachable from some other state if and only if a path exists
between them.

Definition 2.12. Let A = 〈S, s0, L,∆〉 be an LTS, then

- A path in A is a finite sequence π = s0a1s1a2 . . . ansn, with s0 = s0 and
∀i ∈ [0..n − 1] : (si, ai+1, si+1) ∈ ∆. The set of all paths in A is denoted
by pathsA and the last state of π is denoted by last(π). The length of a
path π is denoted by |π| and is equal to the number of states visited by π
(including the first and the last).

- Each path π has a trace associated with it, denoted by trace(π) and given
by the sequence of the actions of π. From all the paths in A we can easily
deduce all the traces in A: tracesA = {trace(π) | π ∈ pathsA}.

- For each trace σ ∈ L∗, reachA(σ) is the set containing all the states that
can be reached by following σ in A. Formally, s ∈ reachA if ∃π ∈ pathsA :
trace(π) = σ ∧ last(π) = s. For a deterministic LTS, finalA(σ) is defined
as the single state contained in reachA(σ).

- The set of all states reachable in A is denoted by reachA, and is formally
defined by reachA =

⋃
σ∈L∗ reachA(σ).

Note that we often write si for the states of an LTS, and we also use si in
the definition of a path. However, these are not necessarily equal; the subscripts
are for reference purposes only. It is not required that the second state of a path
is state s1, for example.

Furthermore, since ∆A is defined to be deterministic, reachA(σ) contains
exactly one state in case σ is a trace in A, and zero states otherwise.

Again, the subscript A is omitted when it is clear from the context which
LTS a concept is related to.

Looking once more at Example 2.10, we can identify the path π = s0 10ct?
s2 tea! s0 10ct? s2 tea! s0. By definition, trace(π) = 10ct? tea! 10ct? tea!.
Note that the set of all traces over the LTS is given by the regular expres-
sion ((20ct? coffee!) ∪ (10ct? tea!))∗ [Sud97]. Finally, reachA = SA, since all
states are reachable from the start state. (In fact, they are reachable from every
state.)
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2.3 Test cases for LTSs

As mentioned before, many mission-critical systems need to be thoroughly
tested. In case such a system has been modeled by an input-output labeled
transition system, we can also formally define its test cases.

Just as has been done in [BBS06], we use a test case model based on ioco
testing theory [Tre96]. We assume — as does ioco — that tests can only fail
based on an output action. Also, we require tests to be fail fast, meaning they
stop directly after observing a failure.

Basically, for each state a test case visits, it chooses to either perform an
input action a? or observe which output action b! the system provides.

Definition 2.13. A test case t for an LTS A is a prefix-closed, finite subset of
L∗A, such that

- if σa? ∈ t, then ∀b ∈ LA : b 6= a?→ σb 6∈ t
- if σa! ∈ t, then ∀b! ∈ LOA : σb! ∈ t
- if σ 6∈ tracesA, then ∀σ′ ∈ L+

A : σσ′ 6∈ t

A test suite T is a tuple of test cases, denoted by (t1, . . . , tn).

Several facts can be observed from this definition. First of all, a test case
does not consist of a single trace, but of a set of traces. Because of the prefix-
closure, we require that if a certain trace is contained in a test case t, also all
its prefixes are (Definition 2.3).

Furthermore, if a certain trace σ is augmented by an input action, no other
trace equal to σ augmented by one action is present in the test case. On the
other hand, if σ is augmented by an output action, then also all traces obtained
by augmenting σ with the other output actions are included in the test case.
Finally, if a certain trace σ is not present in A, then no trace of which σ is a
proper prefix can be present in a test case.

The next definitions define the executions and inner traces of a test case.
An execution of a test case is simply a single trace ending in a leaf of the test
case tree; a situation where no further transitions are specified. This exactly
corresponds to where we end up when a test case is executed in practice.

Inner traces are exactly the opposite; they lead to a state in which there are
still outgoing transitions defined by the test case.

Definition 2.14. Let t be a test case for an LTS A, then an execution of t is a
trace σ ∈ t, such that σ is maximal in t. The set of all executions of t is denoted
by exect, and formally defined by exect = {σ ∈ t | @σ′ ∈ t : σ @ σ′}. A correct
execution of t is an execution σ ∈ exect ∩ tracesA, and an erroneous execution
of t is an execution σ ∈ exect \ tracesA. The set of all erroneous executions of t
is denoted by errt.

Definition 2.15. Let t be a test case, then an inner trace of t is a trace σ such
that σ is not maximal in t. The set of all inner traces of t is denoted by innert
and formally defined by innert = {σ ∈ t | ∃σ′ ∈ t : σ @ σ′}.

Finally, a verdict function is defined, assigning one of the verdicts pass,
fail and cont (short for continue) to each trace in t. Test case executions
corresponding to erroneous behaviour receive the verdict fail, while executions
corresponding to correct behaviour receive the verdict pass. All inner traces
receive the verdict cont.
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fail fail

fail fail

fail pass fail

(10ct?

δ (tea! coffee!

20ct?

δ (coffee! tea!

tea! δ coffee!

Figure 2.2: A test case for A

Definition 2.16. Let t be a test case for an LTS A = 〈S, s0, L,∆〉, then the
verdict function of t is the function vt : t→ {pass, fail, cont}, defined by

vt(σ) =

 pass , if σ ∈ exect ∩ tracesA
fail , if σ ∈ exect \ tracesA
cont , otherwise

Example 2.17. Figure 2.2 visually shows a possible test case for the LTS A
of a coffee machine, introduced in Example 2.10. Observe how each time we
choose between either one input action, or all the output actions (including
the quiescence action δ). Furthermore, we added the verdict fail to all states
resulting from a trace σ for which vt(σ) = fail (corresponding to erroneous
executions), and the verdict pass to all states resulting from a trace σ for which
vt(σ) = pass (corresponding to correct executions).

We can obtain the formal test case t by taking all the possible traces in this
figure (including traces not ending in a verdict, to comply to the required prefix-
closure). The test case is equal to the trace set T = {ε, 10ct?, 10ct? δ, 10ct?
coffee!, 10ct? tea!, 10ct? tea! 20ct?, 10ct? tea! 20ct? δ, 10ct? tea! 20ct? tea!, 10ct?
tea! 20ct? coffee!, 10ct? tea! 20ct? coffee! δ, 10ct? tea! 20ct? coffee! tea!, 10ct?
tea! 20ct? coffee! coffee!}.

Seven executions can be identified (10ct? δ, 10c? tea! 20ct? coffee! δ, and
so on), six of which are erroneous.

2.4 Weighted fault models

To describe the seriousness of faults in an implementation of a system, it is
useful to give not only the correct traces of the system, but also the severity
of the erroneous ones. For this purpose, [BBS06] introduces the concept of a
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weighted fault model.
A weighted fault model is independent of an input-output labeled transition

system, since its definition is based on just an alphabet of actions L. For each
possible trace over L, it defines its error weight. An error weight of 0 defines a
correct trace. The higher the error weight, the worse we consider the presence
of the erroneous trace in a particular implementation.

Definition 2.18. Let L be a finite alphabet of actions, then a weighted fault
model (WFM) over L is a function f : L∗ → R≥0, such that

0 <
∑
σ∈L∗

f(σ) <∞

Based on this definition we can observe that a WFM should always contain at
least one erroneous trace. Furthermore, the sum of all error weights should not
be infinite. The first restriction makes sure that the relative potential coverage
measure defined later on in this section is properly defined, and the second is
necessary because otherwise any measure relative to the total error weight would
yield a value of 0.

2.4.1 Coverage measures based on weighted fault models

Having defined weighted fault models, we can define coverage measures. These
coverage measures indicate how many of the possible faults a certain trace set
(or set of trace sets) can detect. We first define the absolute potential coverage
of a set of traces t over a WFM f , which simply accumulates the error weights
of all traces in t with respect to f . By looking at the total error weight with
respect to f of all the traces over its alphabet, we can easily define the relative
potential coverage of a trace set over a WFM as the fraction of the total error
weight that is potentially covered by it.

The absolute and relative potential coverage of trace sets are extended in a
natural way to the absolute and relative potential coverage of test suites (sets
of trace sets) by first taking the union of their elements.

Definition 2.19. Let f : L∗ → R≥0 be a WFM over some alphabet L, t ⊆ L∗ a
set of traces, and T ⊆P(L∗) a collection of these kind of sets, then we define

- absPotCov(t,f) =
∑
σ∈t

f(σ)

- absPotCov(T,f) = absPotCov(
⋃
t∈T

t, f)

- totCov(f) = absPotCov(L∗, f)

- relPotCov(t,f) =
absPotCov(t, f)

totCov(f)

- relPotCov(T,f) =
absPotCov(T, f)

totCov(f)

A test suite T is potentially complete with respect to a WFM f if and only
if relPotCov(T, f) = 1.
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2.4.2 Consistency of WFMs with LTSs

Although weighted fault models are defined independent of input-output la-
beled transition systems, they are meant to specify the desired and undesired
behaviour of such systems. Since a test case or test suite is actually just a set of
traces (with some extra properties), we can calculate their absolute and relative
potential coverage with respect to a certain WFM based on Definition 2.19.
That way, we obtain a measure for the quality of test cases and test suites.

However, not every WFM f is consistent with an input-output labeled tran-
sition system A. For example, if some trace σ is in A, then our interpretation
requires that f(σ) = 0. Moreover, as mentioned in Section 2.3, we do not al-
low failures directly after an input action, and because of the fail fast property
traces continuing after a failure are not considered erroneous. The next defini-
tion formally defines consistent weighted fault models based on these criteria.

Definition 2.20. Let A = 〈S, s0, L1,∆〉 be an LTS and f : L∗2 → R≥0 be
a WFM. Then, f is consistent with A if and only if they concern the same
alphabet (L1 = L2) and for all σ ∈ L∗1,

- if σ ∈ tracesA, then f(σ) = 0
- ∀a? ∈ LI1 : f(σa?) = 0
- if f(σ) > 0 then for all σ′ ∈ L+

1 we have f(σσ′) = 0

Example 2.21. Looking again at the LTS of Figure 2.1(b) (which we will refer
to by A in this example), we will give a rough overview of how a possible WFM
consistent with it would look like. We start by considering all traces that should
have an error weight of zero, in order to comply to the consistency constraint.

First of all, for all traces σ in A, f(σ) = 0. So, f(ε) = f(δ) = f(10ct?) =
f(10ct? tea!) = f(20ct?) = · · · = 0. Furthermore, for all traces σ not in A
ending in an input action, f(σ) = 0, so also f(10ct? 10ct?) = f(10ct? 20ct?) =
f(20ct? 10ct?) = · · · = 0. Finally, for all traces σ not in A ending in an output
action, but with a proper prefix that is also erroneous, f(σ) = 0, so f(tea!
tea!) = f(10ct? δ δ) = · · · = 0.

We are left with are all traces not in A, ending in an output action and not
having a proper prefix that is also erroneous. These traces may also be assigned
an error weight of zero (as long as at least one of them is positive), but it is more
logical to assign positive numbers. After all, these are the traces in a test case
that would end up at a fail verdict. Using some of these traces as an example,
f could be given a by:

f(10ct? δ) = 5 (not producing anything after inserting a 10 cent coin)
f(10ct? coffee!) = 3 (producing coffee after inserting a 10 cent coin)
f(10ct? tea! 10ct? δ) = 4.9 (not producing anything after a 10 cent coin)
etc...

The reason for choosing 4.9 instead of 5 as the error weight for the third
trace is that a failure later on is considered less severe than the same failure
earlier. Moreover, if we would not do this, we would get a WFM with an infinite
error weight, which conflicts with the definition.
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2.5 Fault automata

As Example 2.21 showed, it is quite some work to properly define a weighted
fault model for an input-output labeled transition system. Even worse, since
practically all LTSs contain an infinite number of traces, one has to define
an infinite number of error weights. Although this could be accomplished by
formulae in some cases, for more complicated systems it might be very difficult
if not impossible. Therefore, [BBS06] introduces fault automata, which can be
used to specify WFMs in a more manageable format.

In fact, a fault automaton is nothing more than an LTS A and a function r,
specifying for each state the severity of producing the unexpected output ac-
tions.

Definition 2.22. A fault automaton (FA) F is a pair 〈A, r〉, where A =
〈S, s0, L,∆〉 is an LTS, and r : S × LO → R≥0. We require that r(s, a!) = 0 if
∃s′ ∈ S : (s, a!, s′) ∈ ∆.

Notice that r is only defined over S × LO and not over S × L, since errors
can only occur after an output action.

All concepts and notations defined for LTSs will also be used for fault au-
tomata, abstracting from the fact that a fault automaton contains an LTS
instead of being one. For example, with a trace over a fault automaton F we
will mean a trace over its LTS.

Definition 2.23. Let F = 〈A, r〉 be a fault automaton, then r̄ : SA → R≥0

assigns the accumulated weight of all erroneous outputs in a state to that state.
Formally,

r̄(s) =
∑

a∈LOA(s)

r(s, a)

Example 2.24. Figure 2.3 shows a fault automaton for the LTS defined in Ex-
ample 2.10. It specifies that producing coffee when no money has been inserted
is considered to be of severity 9. If tea is produced, this is a bit less severe, since
tea is cheaper than coffee.

If after inserting a 10 cent coin nothing is provided, this is defined to be of
severity 5. If coffee is provided this is less severe, since the customer receives at
least something, but of course it is still an error.

Formally, this fault automaton is defined as F = 〈A, r〉, with A the LTS
given before, and r fully defined in Table 2.1.

s0s1 s2

20ct? 10ct?

coffee! tea!

δ

7 9

(tea! (coffee!

6 5

(δ (δ

2 3

(tea! (coffee!

Figure 2.3: A fault automaton for A
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r(s0, δ) = 0 r(s0, tea!) = 7 r(s0, coffee!) = 9
r(s1, coffee!) = 0 r(s1, tea!) = 2 r(s1, δ!) = 6
r(s2, tea!) = 0 r(s2, coffee!) = 3 r(s2, δ) = 5

Table 2.1: The error weight function for F

We immediately obtain r̄(s0) = 7 + 9 = 16, r̄(s1) = 2 + 6 = 8, and r̄(s2) =
5 + 3 = 8.

2.6 From FA to WFM

In Section 2.4 we explained how a weighted fault model describes the correct
and erroneous behaviour of a system. Then, in Section 2.5 we defined fault
automata as a syntactic format for specifying such a WFM. Since we defined
the absolute and relative potential coverage of a test suite in terms of WFMs,
it is desirable to construct a WFM f from an FA F . Intuitively, we would like
that for each trace σ ending in some state s, an erroneous trace σa! is assigned
the error weight r(s, a!). Since infinitely many traces may end up in s, however,
this could have the effect that totCov(f) =∞.

To construct a WFM based on an FA such that the total coverage is fi-
nite, two methods are proposed in [BBS06]. We will first consider finite depth
weighted fault models, giving a positive error weight only to traces with a length
smaller than some constant. Then, we will discuss discounted weighted fault
models, decreasing the weight of traces based on their length.

2.6.1 Finite depth weighted fault models

A finite depth weighted fault model only assigns a positive error weight to traces
σ for which |σ| ≤ k. Since we require the alphabet of a WFM to be finite, this
restriction results in a finite number of traces with a positive error weight. That
way, the accumulated error weight remains finite, even though the number of
traces itself is infinite.

Definition 2.25. Let F be a fault automaton and k ∈ N, then the function
fkF : L∗ → R≥0 is defined by

fkF (ε) = 0

fkF (σa) =

 r(s, a) if |σ| < k ∧ a ∈ LO∧
∃π ∈ pathsF : trace(π) = σ ∧ last(π) = s

0 otherwise

Since LTSs were defined to be deterministic, there can only be one path in
L associated with each trace σ over L. Therefore, the function fkF is uniquely
defined.

Proposition 2.26. Let F be a fault automaton and k ∈ N. If there exists at
least one state s reachable in k− 1 steps for which r̄(s) > 0, then fkF is a WFM
consistent with the LTS of F .

For a proof, we refer to [Bri07].
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2.6.2 Discounted weighted fault models

While a finite depth WFM considers only traces limited in length by some
constant, a discounted WFM considers all traces. However, it reduces the error
weight of each trace based on the trace length. This construction is supported
by the assumption that failures in the near future are worse than failures in
the far future. Of course, discounting has to be applied in such a way that the
accumulated weight of all traces is less than ∞.

The basic idea is to introduce a function α : S ×L× S → R≥0 for each LTS
〈S, s0, L,∆〉, assigning a discount factor to each transition. Then, the trace
σ = a1a2 . . . ak, belonging to the path s0a1s1a2s2 . . . sk−1aksk, is discounted by
α(s0, a1, s1)α(s1, a2, s2) · · ·α(sk−1, ak, sk).

We need the following definition for a restriction on α, making sure the total
coverage will not be infinite.

Definition 2.27. Let F be an FA, then InfF ⊆ SF is the set of all states with
at least one outgoing infinite path. Formally, InfF = {s ∈ S | ∃π ∈ pathsF [s] :
|π| > |S|}.

The formal part of Definition 2.27 corresponds to the intuition of a infinite
path, since a trace visiting more states than the total number of states must
contain at least one cycle. This cycle can be repeated infinitely many times,
obtaining an infinite path.

Now we can precisely define discount functions and the way to apply them
on paths.

Definition 2.28. Let F be an FA, then a discount function for F is a function
α : SF × LF × SF → R≥0, such that

- ∀s, s′ ∈ SF , a ∈ LF : α(s, a, s′) = 0⇔ (s, a, s′) 6∈ ∆F
- ∀s ∈ SF :

∑
a∈L,s′∈InfF

α(s, a, s′) < 1.

For a detailed explanation of the second restriction, which makes sure that
the total coverage will not be infinite, see [BBS06].

Definition 2.29. Let α be a discount function for F and let π = s0a1 . . . ansn
be a path in F , then α(π) =

∏n
i=1 α(si−1, ai, si).

Using all the above definitions, we can define a weighted fault model based
on discounting.

Definition 2.30. Let F be an FA and α as discount function, then the function
fαF : L∗ → R≥0 is defined by

fαF (ε) = 0

fαF (σa) =

 α(π) · r(s, a) if a ∈ LO∧
∃π ∈ pathsF : trace(π) = σ ∧ last(π) = s

0 otherwise

Because of determinism, there is at most one path π corresponding to σ.
Therefore, the function fαF is uniquely defined.

Proposition 2.31. Let F be a fault automaton and α a discount function for
F . Then, if there exists at least one state s that is reachable for which r̄(s) > 0,
fαF is a WFM consistent with F .

For a proof, we again refer to [Bri07].





Chapter 3
Nondeterministic fault automata

In this chapter, we extend the framework on potential coverage from [BBS06]
to nondeterministic specifications. The reason for this is that many systems are
modeled, or can be modeled much easier, using nondeterministic LTSs. Since
it is well-known from literature that every nondeterministic LTS has a trace
equivalent deterministic LTS, the theory of Chapter 2 can also be applied to
these kinds of systems.

We first construct nondeterministic FAs based on nondeterministic LTSs,
still using an error weight function similar to the one used before. However,
the interpretation changes slightly, since there might be several different error
weights assigned to the same trace. To enable the use of all definitions and
propositions of the existing test coverage framework, our aim is to transform
such nondeterministic FAs into deterministic FAs. This transformation is per-
formed in two parts.

First, the underlying LTSs have to be determinised. The familiar subset
construction can be applied, but a difficulty arises concerning the interplay with
the special quiescence action δ. We show that removing nondeterminism first
and adding quiescence afterwards results in nonequivalent systems. On the other
hand, adding quiescence before determinising results in systems that do not
comply to the definition of quiescence by ioco theory. We solve this difficulty
by extending the definition of quiescence, integrating it with the concept of
nondeterminism.

Second, the error weight function has to be adapted. The error weight of an
erroneous output in the determinised FA is defined as the lowest error weight
assigned to it by the nondeterministic FA.

Organisation of this chapter
Section 3.1 first defines nondeterministic LTSs, and describes the subset con-
struction. Then, FAs based on nondeterministic LTSs and the way to deter-
minise them are described in Section 3.2. Finally, Section 3.3 discusses the
problem considering quiescence, and its solution. An algorithm for applying the
transformation, including a detailed example and a discussion on its complexity,
can be found in Appendix A.

21
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3.1 Nondeterministic LTSs

The difference between nondeterministic and deterministic LTSs is that a state
s and an action a do not uniquely identify the next state of the system any-
more, since there might be several a-transitions from s to different target states.
Therefore, an observer just seeing the external behaviour of a system might not
be able to know precisely in which state the system is at a certain point during
execution.

Note that, for simplicity, we ignore the possible existence of τ -transitions.
However, the transformations needed to incorporate this unobservable behaviour
are already known from literature [Sud97]. One could substitute these methods
for ours without any consequences.

Definition 3.1. A nondeterministic input-output labeled transition system N
is given by a tuple 〈S, s0, L,∆〉, where

- S is a finite set of states
- s0 is the initial state
- L is a finite set of actions, partitioned into a set LI of input actions and

a set LO of output actions (L = LI ∪ LO and LI ∩ LO = ∅)
- ∆ ⊆ S × L× S is the transition relation

Note that Definition 3.1 only differs from Definition 2.8 on its fourth con-
straint. For nondeterministic LTSs we drop the requirement that s′ = s′′ if
(s, a, s′) ∈ ∆ and (s, a, s′′) ∈ ∆.

All definitions about LTSs given in Chapter 2, including paths and traces,
are still valid for nondeterministic LTSs. However, for nondeterministic LTS
there can now be multiple paths associated with one single trace. Following
ioco theory [Tre96] and just applying Definition 2.20, we consider a trace over
a nondeterministic LTS correct if there is at least one path corresponding to it.

3.1.1 Determinising LTSs

It is well-known that each nondeterministic LTS N is equivalent to a determin-
istic LTS DN , such that both have exactly the same traces. For this purpose
we can use the so-called subset construction, also called powerset construction,
which is described in most elementary textbooks on automaton theory [Sud97].
The following definition and proposition describe the transformation and its
properties.

Definition 3.2. Let N = 〈S, s0, L,∆N 〉 be a nondeterministic LTS. Then DN
is an LTS, defined as DN = 〈P(S) \∅, {s0}, L,∆A〉, with

∆A = {(s, a, t) | s ∈P(S) ∧ a ∈ L ∧ t = {t′ ∈ S | ∃s′ ∈ s : (s′, a, t′) ∈ ∆N }}

Proposition 3.3. Let N = 〈S, s0, L,∆N 〉 be a nondeterministic LTS. Then
DN is deterministic and trace equivalent to N .

The idea behind the automaton DN is as follows. Its states (called super-
states) are sets of states of N . A transition from a superstate s to a superstate
t by an action a exists if for all states in t a state in s exists that can reach t
by an a transition. Moreover, no superset of t satisfying this condition should
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Figure 3.1: A fault automaton based on a nondeterministic LTS

exist. In this way the states of a superstate exactly represent the states that N
can possibly be in based on the transitions that have occurred thus far.

Initially, the only possible state N can be in is s0, so the initial state of DN
is {s0}. Furthermore, N and DN obviously have to have the same alphabet to
be trace equivalent.

3.2 Nondeterministic FAs

In Definition 2.22 we defined a fault automaton as a pair 〈A, r〉, where A is a
deterministic LTS, and r is a function assigning error weights to the occurrence
of output actions.

For a nondeterministic FA we drop the assumption made previously that A
is a deterministic LTS. Since in both deterministic and nondeterministic LTSs
an output action a! is erroneous in case there is no a! transition, the existing
semantics and interpretation for the function r can be preserved.

Example 3.4. Figure 3.1 shows an example of a fault automaton based on a
nondeterministic LTS. This FA is nondeterministic, because the occurrence of
an a! transition in state s0 can either result in a move to s1, or a self-loop
to s0. This choice determines what can happen next. If we enter s1, a b! can
be observed. However, if we remain in the initial state, this output is specified
to be incorrect. Furthermore, the error weight assigned to the occurrence of c!
depends on the transition that is taken.

3.2.1 Determinising FAs

To determinise an FA, both the LTS and the error weight function have to be
dealt with. For determinising the LTS, we can simply use the subset construc-
tion described in Section 3.1.1. By applying this construction, a new LTS with
a different structure is obtained. Therefore, a new error weight function has to
be constructed as well.

Nondeterministic FAs may assign different error weights to the same trace.
It could even be the case that an output is considered correct when following
one path, but considered erroneous when following another path corresponding
to the same trace.

These situations both occur in the FA shown in Figure 3.1. Starting in state
s0 the trace a! b! either has an error weight of 5, or is considered correct. As the
trace is present, it will not be considered erroneous, and the a! b! failure should
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not be visible anymore in the determinised FA. To accomplish this, an output
action a! from some superstate s of a determinised LTS is only considered
erroneous in case none of the states s contains can perform a!.

In case an output action indeed is erroneous from a certain superstate, an
error weight should be given. However, since the original FA provides an error
weight for this output action for every of the corresponding states, there might
be different values. In Figure 3.1 the error weight of a! c! is either 3 or 7,
depending on the transition that was taken by the a! action. We have chosen
to use the minimum value of these error weights for the determinised FA. This
is in line with the interpretation that a trace is correct when there is at least
one path justifying it. In this case the occurrence of the trace a! c! therefore
has an error weight of 3.

This results in the following definition, describing for each nondeterministic
fault automaton the deterministic fault automaton we considered equivalent.

Definition 3.5. Let F = 〈N , r〉 be a nondeterministic fault automaton, based
on the nondeterministic LTS N = 〈S, s0, L,∆N 〉. Then, DF = 〈DN , r′〉 is its
corresponding deterministic fault automaton. The error weight function r′ is
given by

r′(s, a) =
{

0 , if ∃s′ ∈ SA : (s, a, s′) ∈ ∆A
mins′∈s r(s′, a) , otherwise (3.1)

For an algorithm applying the subset construction while incorporating the
error weight function, see Appendix A.

3.3 Dealing with quiescence

In the previous section we discussed determinising LTSs, mentioning nothing
about the special quiescence action δ. Adding quiescence is, however, vital to
support testing based on fault automata, since it enables us to give an error
weight to a state being erroneously quiescent. Therefore, we want our theory
to allow the nondeterministic fault automata to incorporate quiescence.

As indicated in [BBS06], quiescence is not preserved under determinisation,
so it is not possible to just consider it as one of the output actions. [BBS06]
recommends to remove nondeterminism first and then add quiescence in the
conventional manner. Adding quiescence afterwards, however, results in an
LTS representing different behaviour than the original nondeterministic LTS.

Figure 3.2 illustrates the problem at hand. Suppose we have the LTS de-
picted in Figure 3.2(a). After it does an a!, it can either enter the quiescent
state s1, or the state s2 from which another a! can occur.

If we add quiescence after determinisation we obtain the LTS depicted in
Figure 3.2(b). It shows that after an a!, either an a! or a b? transition can
take place. Because of this output action a!, the composed state {s1, s2} does
not allow quiescence. However, the nondeterministic automaton we started
with does allow quiescence after the first a!. Therefore, adding quiescence after
determinisation does not preserve the behaviour of a nondeterministic LTS.

According to ioco theory, however, a δ transition can only be added to a
state with no outgoing output actions. Furthermore, it is required to be a self-
loop. This makes it impossible to specify that a state from which an output
action can occur is also allowed to be quiescent.
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Figure 3.2: Handling quiescence when removing non-determinism

As a solution, we propose to extend the meaning of δ, making it possible to
transform a nondeterministic LTS into a deterministic one without loosing any
information or changing its meaning.

Definition 3.6. Let A be an LTS, and s, s′ ∈ SA. A transition (s, δ, s′) may be
added if ∆O

A(s′) = ∅. It signifies that when A is in s, it is allowed to do nothing
until an input arrives, and that it continues waiting in s′.

To explain the restriction put on δ transitions, observe the LTS in Figure 3.3.
In this case the target state of the δ transitions does have an outgoing output
transition. This means that a trace consisting of a δ followed by an a! can occur,
which does not seem sensible. After all, a δ transition means that the system
has to wait for input, before it can do an output action again.

s0 s1 s2
δ a!

Figure 3.3: Quiescence wrongly applied
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Now that quiescence is defined in such a way that it is possible to have δ tran-
sitions with different source and target states, it is possible to add quiescence
prior to determinisation. The result of determinising the LTS of Figure 3.2(a)
is shown in Figure 3.2(c). Now it is clear that after an a! is observed, both
the output of another a! and quiescence are correct behaviour. After observing
quiescence, the a! cannot be observed anymore before an input action is given,
as required by Definition 3.6.

Using the new definition of quiescence, the suspension traces (traces possibly
including one or more δ) of the determinised LTS are equal to the suspension
traces of the original LTS. After all, δ can now be added prior to determinisation
and will therefore just be considered as an action. Since it is known from the-
ory that determinisation yields trace equivalence, adding quiescence beforehand
yields suspension trace equivalence.

It is immediate that the suspension traces were not preserved when using
the old definition and adding quiescence afterwards, since Figure 3.2 shows a
counter example.



Chapter 4
From potential to actual coverage

Having described the framework on potential coverage of [BBS06], an important
limitation can be observed: it only describes how many faults are potentially
detected. Since a finite number of test executions might not be able to detect all
erroneous traces [HT96], this only correctly describes the faults that are covered
for an infinite number of executions.

This remainder of this thesis extends the theory on semantic test coverage
by defining actual coverage: a notion that basically not only takes into account
which faults are contained in a test case, but also how many will actually be
covered during one or more test executions. Actual coverage will be evaluated
given a sequence of executions, and predicted based on a test case or test suite
and a probabilistic execution model of a system.

This chapter describes the notion of actual coverage in detail, explaining
it first intuitively and then discussing the formal ingredients of our framework.
We explain the main concepts that will be developed in the subsequent chapters
(a probabilistic execution model, the evaluation of actual coverage and the pre-
dicting of actual coverage), giving a broad overview of the purpose and cohesion
of these concepts.

Organisation of this chapter
First, Section 4.1 discusses the limitations of potential coverage. Then, the
requirements of the coverage notion to be developed are explained in Section 4.2.
The resulting notion, actual coverage, is then intuitively explained in Section 4.3.
Finally, Section 4.4 introduces the formal ingredients that will be defined in the
next chapters.

4.1 The limitation of potential coverage

As explained in Chapter 1, many different definitions of coverage can be found
in literature on testing. The framework of [BBS06], discussed in Chapter 2,
made an initial attempt to define coverage from a semantic point of view. It
defines coverage as the number of potential faults that are potentially detected,
weighted by the severity of each fault.
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pass fail fail pass

a! b!

a! (b! (b! a!

10 10

Figure 4.1: A test case t

There is an important limitation to the approach taken in [BBS06]: the fact
that it only describes which faults are potentially covered. When a test case is
executed just once, however, not all traces over it are actually traversed by the
system (unless the test case does not branch). An immediate consequence is
that during a single execution of a test case, not all faults that were potentially
covered are actually covered. Since test case executions might overlap, every
finite number of executions might fail to cover all faults. Therefore, the notion
of potential coverage only correctly describes the faults that were covered for
an infinite number of test case executions.

As an example, observe Figure 4.1. Although the coverage measure of
[BBS06] would deem the absolute coverage of this test case to be 20, a sin-
gle execution will only be able to detect at most one of the faults. This shows
that potential coverage does not draw conclusions about what will happen when
a test case or test suite is executed a finite number of times, or how many times
it should be executed to obtain on average a certain coverage.

This chapter extends the framework of [BBS06], introducing a new notion
of coverage that does deal with these issues.

4.2 Requirements for a new notion of coverage

The main requirement of our notion of coverage is that it improves potential
coverage by taking into account which faults were actually shown present or
absent during a certain execution or sequence of executions. Furthermore, we
want to be able to predict how many faults will actually be covered during a
certain number of executions. Therefore, our notion is called actual coverage.

Our definition of actual coverage has been directed by several subrequire-
ments, listed below. For every requirement a motivation is provided. When
applicable, we also discuss the technical implications for the framework to be
developed. Note that the third requirement is partly implied by the fourth.

1. When the number of executions of a test case approaches infinity, its actual
coverage should approach its potential coverage.

Motivation:
The potential coverage measure denotes the error weight of all faults
that potentially can be detected by a test execution. Although in a
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single execution not everything can actually be detected, for infinitely
many executions this will be the case (assuming all faults are reachable).

2. The actual coverage of a sequence of test case or test suite executions E
should be larger than or equal to the actual coverage of a sequence of
executions E′ ⊆ E.

Motivation:
By testing more thoroughly we can obviously only learn more about a
system, therefore obtaining more coverage (or an equal amount, if we
learned nothing new).

3. Correct executions might have a nonzero actual coverage value.

Motivation:
When no failures occur from any of the intermediate states of a correct
execution, our confidence in the absence of faults increases. Therefore,
observing a correct execution should yield a nonzero actual coverage
value (unless only states were visited in which all behaviour is correct,
naturally).

In other words:
The framework should consider a fault σa not only covered when it is
observed, but also when an execution increases the confidence in its
absence. This is the case when σ is observed, but the system provides
an output action different from a.

4. Observing the same correct execution more often should increase actual
coverage, with an amount depending on the probability with which po-
tential failures on its path occur. It should depend on the error weights
of the corresponding faults as well.

Motivation:
A fault σa that is present in a given implementation might nonetheless
not be observed after every observed σ. For example, faults correspond-
ing to threading might result in failures only sporadically. Therefore, a
single correct execution does not exclude all faults on its path. Covering
a fault more often should thus increase the total actual coverage value
(unless it is certain that, in case it is present, it occurs every time its
source state is visited). For faults that — in case they are present —
result in failures only sporadically, more executions covering them are
necessary to achieve the same certainty of absence than for faults that
can be observed very often.

In other words:
The framework should incorporate estimations of failure occurrence
probabilities, given that the corresponding faults are present. That
way, it can define the actual coverage of a fault based on the number of
correct executions showing its presence or absence and the probability
of resulting in a failure in case it is present.

5. After an execution terminated by failure, later executions observing either
the presence or absence of the corresponding fault should not influence its
actual coverage anymore.
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Motivation:
When a failure is observed, we know with certainty that the correspond-
ing fault is present. Therefore, we consider it completely covered.

We will use the notion of actual coverage for two different purposes: to
evaluate the obtained coverage after testing has completed, and to predict the
actual coverage a test case will yield. This way, actual coverage can be applied
to decide how useful a testing process has been, and to compare test cases or
test suites in advance such that the best one can be selected before testing has
started.

To be able to reason about the expected outcome of a test execution in
advance, it is unavoidable to make assumptions on the behaviour of the sys-
tem under test. This justifies our choice to include a thorough discussion on
probabilities.

4.3 The intuition behind actual coverage

Actual coverage is defined for executions of test cases. It resembles the notion of
potential coverage of [BBS06] in the sense that it accumulates the error weights
of faults in a test case. However, a fault σa is only considered actually covered
if an execution informed us about whether the fault is present or absent. When
σa has been observed we know it is present, and when σb has been observed we
increased our confidence in the absence of σa. Traces not starting with σ do
not actually cover the fault σa.

Since the absence of a fault can in general not be determined with certainty,
we take only a fraction of each error weight. This fraction is equal to the
coverage probability of the corresponding fault, given an execution or sequence
of executions.

The coverage probability of a fault indicates how certain we know whether it
is present or absent. If a fault was observed, no doubts remain, so its coverage
probability is 1. On the other hand, if a fault has not been observed, there
might have been one or more executions that showed its absence. The cover-
age probability then describes how likely it is that the fault would have been
observed in case it was present. After all, the higher this probability, the more
certain we are of its absence.

We define the actual coverage distribution of a test case to be the actual
coverage it yields. This is modeled as a random variable, since several executions
might occur. Earlier work followed the same approach [HT96]. We provide
formulae for the calculation of the expected actual coverage, that way predicting
the quality of a test case.

4.4 The formal ingredients of actual coverage

Our framework on actual coverage consists of several components, based on the
concepts of the framework on potential coverage. We introduce a probabilistic
execution model and, based on this model, we provide the notion of actual
coverage and the notion of an actual coverage distribution.

The fact that we need probabilistic information about the system is imme-
diate from the purpose of actual coverage. As it has to predict which faults
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will be covered, the behaviour of the system needs to be estimated. Because
many modern systems are highly nondeterministic, this behaviour can only be
specified by equipping it with probabilities.

• The probabilistic execution model consists of two functions: pbr and pcbr

(in which the superscripts stand for branching and conditional branching).
The function pbr describes the expected probabilistic transition behaviour
of a test case, by assigning probabilities to its branches. It is needed to
estimate how often the state from which a potential failure can occur is
visited during test executions. The function pcbr describes the expected
probabilities with which failures occur given that they are present. It is
needed to estimate how certain we can be of the absence of a fault, after
we have observed a given number of executions that did not fail. This
certainty is expressed as the fault’s coverage probability pcov.

The probabilistic execution model is defined over test cases, since this
makes it finite. Moreover, the transition behaviour of a system depends
on whether or not we choose to provide input actions; this is specified
by a test case. However, we will also define probabilistic fault automata
(PFAs) to specify the probabilities over a system. The reason for this is to
provide an easy syntactic means to specify all relevant probabilities just
once, instead of having to specify them again for every test case. A PFA
is actually just an FA, augmented with generalised functions pbr and pcbr.
A transformation is provided to obtain the probabilistic execution model
over given test cases automatically from such a PFA.

As a possible extension we discount the error weights based on the prob-
abilistic execution model, obtaining risk-based testing. The discounted
error weights then describe the importance of preventing the existence of
the corresponding faults, instead of the severity of their occurrence.

The probabilistic execution model is described in Chapter 5.

• The actual coverage of a specific execution or sequence of executions is
defined as the sum of all the error weights of all failures that can occur
from any observing state visited during such an execution or sequence of
executions, each multiplied by its coverage probability. Calculating actual
coverage after testing has completed is well-suited to evaluate whether or
not more testing is required.

We show how to calculate how many executions covering a fault are needed
to achieve a certain coverage probability.

In the calculation of actual coverage we only need the function pcbr of
the probabilistic execution model. Therefore, a simplified version of the
probabilistic execution model (omitting pbr) can be used if the framework
is only applied to evaluate the actual coverage of given executions.

The evaluation of actual coverage is described in Chapter 6.

• The actual coverage distribution of a test case, also computed based on
the probabilistic execution model, is represented by a random variable
describing the actual coverage obtained by executing a test case (parame-
terised by the number of executions). It can be used for test selection, as
it predicts in advance what will happen during test executions. Clearly,
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to calculate this, it is necessary to estimate how the system will behave
during the executions. For this estimation the function pbr is used, so the
complete probabilistic execution model is needed. However, we propose an
approximation that uses a simplified version of the probabilistic execution
model.

The most important property of the actual coverage distribution is its
expected value. This gives an expectation of the actual coverage that will
be achieved. We show that when the number of executions approaches
infinity, the expected value of actual coverage approaches potential cov-
erage. Besides the expectation of actual coverage we also investigate its
variance. Unfortunately, it will turn out that the calculation of variance
is not possible in polynomial time.

The prediction of actual coverage for test cases is described in Chapter 7.

In Chapter 8, all notions described above are generalised to also be used on
test suites instead of only test cases.

4.5 An introductory example

To acquire a basic feeling about the applicability of actual coverage, we provide
an example in which an important part of the theory of the subsequent chapters
is applied informally.

Estimating the probabilistic behaviour
Consider the test case of Figure 4.1 again. As explained before, we describe
the behaviour of the implementation under test by estimating its probabilistic
execution model. It consists of the probability with which each branch is chosen
(the branching probabilities pbr) and the probability of the occurrence of each
failure given that the corresponding fault is present (the conditional branching
probabilities pcbr).

Let us first assume a flawless system. It provides an a! with probability
0.75, and a b! with probability 0.25. Incorporating these probabilities in the
model, we obtain the test case depicted in Figure 4.2 on the left.

Also taking possible failures into account, we might for example estimate
that the conditional branching probability of both faults is 0.75. Moreover, we
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Figure 4.2: Probabilistic models for t
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can estimate the probability that the faults are present (later called the presence
probabilities), in this case for example 0.2. Multiplying these probabilities we
obtain the unconditional probability of a b! after an a! or b!, resulting in 0.15.
Note that this does not mean that the faults are known to be present and always
occur fifteen times every one hundred executions. It does mean that if we would
take ten random implementations and execute each ten times, we expect to see
approximately fifteen failures.

Together, the branching probabilities pbr and the conditional branching
probabilities pcbr constitute the probabilistic execution model. Depicting this
model visually, we obtain the test case shown in Figure 4.2 on the right.

Note that the conditional branching probabilities are included in the test
case only as an easy way to represent the probabilistic behaviour in one figure.
They can be interpreted as possible substitutions for the branching probabilities
above them: the conditional branching probability 0.75 on the a! b! branch
denotes that the probability of a b! after an a! is either 0.0 or 0.75. The
branching probability 0.15 is the weighted average of these two probabilities,
each weighted by the probability that it applies. As the presence probability
was estimated to be 0.2, we observe that indeed 0.75 · 0.2 = 0.15.

Evaluating actual coverage
Using the probabilistic execution model obtained thus far, actual coverage can
be evaluated. For simplicity we ignore relative actual coverage for the moment,
and just focus on absolute actual coverage: absCov.

Assuming we have observed the execution σ = a! b!, we obtain an actual
coverage of 10 (since one of the faults has been shown to be present). If we have
observed the sequence of executions E = (a! b!, b! b!), we obtained an actual
coverage of 20 (since both faults have been shown to be present).

If, however, we have observed the sequence of executions E = (a! a!, a! a!),
we did not show the presence of any fault. We did increase our confidence in
the absence of a! b!, although we still do not know whether it is indeed absent.
The actual coverage is therefore just a fraction of its error weight. As indicated
before, the fraction is called the coverage probability pcov of a! b!. It is defined
as the probability that the erroneous execution a! b! is observed at least once,
given the number of times we observed a! and given the presence of a! b!.

In this case, we observed a! twice, and the probability of a b! after an a!
is 0.75 in case it is present. Therefore, the probability of not seeing a! b! both
times is (1 − 0.75)2. This immediately yields that the coverage probability is
1 − (1 − 0.75)2 = 0.9375. Multiplying by the error weight, this gives an actual
coverage of 9.375.

Predicting actual coverage
Instead of evaluating the actual coverage of a given execution or sequence of
executions, we might also be interested in predicting the actual coverage a test
case will obtain. As we saw before, executing a test case once or several times
might result in different executions each time this ‘experiment’ is performed.
Since each execution has its own actual coverage, the actual coverage a certain
number of test case executions yields can be described by a probability distri-
bution. This distribution is called an actual coverage distribution, denoted by
the random variable At,f (t referring to the test case, f to its weighted fault
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Execution pto absCov
a! b! 0.75 · 0.15 = 0.1125 10
b! b! 0.25 · 0.15 = 0.0375 10
a! a! 0.75 · 0.85 = 0.6375 7.5
b! a! 0.25 · 0.85 = 0.2125 7.5

Table 4.1: Probabilities of executions and their actual coverage

model).
For the test case of Figure 4.2, a single execution can yield four different

traces. For each trace, the probability of its occurrence (later called its trace
occurrence probability pto) and its absolute actual coverage are shown in Ta-
ble 4.1.

It is not difficult to see that the actual coverage distribution of the test case
is therefore given by

P[At,f = 10] = 0.1125 + 0.0375 = 0.15
P[At,f = 7.5] = 0.6375 + 0.2125 = 0.85

From this we derive its expected value by

E(At,f ) = 10 · 0.15 + 7.5 · 0.85 = 7.875

Note that the number of possible executions rises exponentially with the
number of test executions that will be performed, making the calculation method
applied above infeasible for larger systems. However, we will present a derivation
that can still be calculated in polynomial time.

Moreover, the methods used above are generalised to test suites.



Chapter 5
Probabilities in
test case executions

If it is unknown how a system behaves, estimating how many faults one of its
test cases will unveil is impossible. Therefore, several probabilities have to be
known, estimated or measured.

This chapter discusses all the probabilities necessary for the coverage anal-
yses in the next chapters. We will first describe the random experiment of
executing a test case t, and the induced random variable Xt corresponding to
the trace obtained this way. Then, the function pto is defined, assigning to every
trace the probability that it will occur during an execution. Also, we define the
function pbr, assigning to each sequence of actions the probability distribution
of the next action. We show that both pto and the probability distribution
function of Xt are derivable from pbr. Then, conditional branching probabilities
are introduced, described by the function pcbr. It specifies for each fault how
often it results in a failure, given its presence.

We define the probabilistic execution model for each test case as a pair con-
sisting of pbr and pcbr, together describing all relevant probabilities. Probabilis-
tic fault automata are introduced as a semantic way to specify such probabilistic
execution models over automata, instead of over test cases. To assist the user
of this framework in specifying probabilistic execution models, we describe in
detail the process of obtaining the necessary probabilities.

We discuss an immediate application of the probabilities derived in this
chapter: to transform error weights into error risks, based on the theory of
risk-based testing [Aml00].

Organisation of this chapter
First, Section 5.1 and Section 5.2 briefly recall the theory on probability spaces,
random variables and conditional probabilities. These concepts are used in Sec-
tion 5.3 to describe the random variable Xt. Then, Section 5.4 defines the
functions pto and pbr, and proves that pbr is sufficient to derive pto and the
probability distribution function of Xt. Section 5.5 defines pcbr, after which
Section 5.6 formally defines the probabilistic execution model. Section 5.7 dis-
cusses probabilistic fault automata, and Section 5.8 describes the process of
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obtaining the relevant probabilities. Section 5.9 concludes this chapter by dis-
cussing risk-based testing.

5.1 Probability spaces and random variables

A random experiment is an experiment whose outcome cannot be predicted in
advance. Every time the experiment is performed (a trial) its outcome is one of
a set of possible outcomes. This set is called its sample space. A basic event is
an element of the sample space. An event is a statement about the outcome of a
random experiment; formally it is a subset of the sample space. The probability
of an event E is the probability that the outcome of the experiment is in E.

Formally, a random experiment is a pair (Ω, P ), called a probability space1.
In this pair, the element Ω is a set identifying the sample space. Every ω ∈ Ω
corresponds to a certain basic event in the physical world. The element P is
a function from P(Ω) to [0, 1], assigning a probability to each event in P(Ω).
It is called the probability distribution over Ω, and should be such that the
probability axioms are satisfied. This entails P (Ω) = 1, and P (E1 ∪ . . .∪En) =
P (E1) + · · · + P (En) for any countable sequence of pairwise disjoint events
Ei ∈P(Ω).

From a mathematical perspective, a probability space defines all relevant
properties of a random experiment; we are only interested in which events are
possible, and the probability of each event.

To avoid having to work directly with probability spaces, random variables
are used. Often, a random variable X on a probability space (Ω, P ) is a function
from Ω to R. We will, however, also use random variables with a different
codomain (denoted by SX). The probability distribution of a random variable
X on a probability space (Ω, P ) is given by P[X = x] = P ({w ∈ Ω | X(w) = x}).
We extend this standard notation with P[σ v X], denoting the probability that
σ is a prefix of the valuation of X. Obviously, this definition only applies to
random variables with a codomain consisting of traces.

Definition 5.1. Let X be a random variable with a codomain SX . If there is
a set L such that SX ⊆ L∗, then we define

P[σ v X] =
∑
σ′∈SX
σvσ′

P[X = σ′]

A random variable X on a sample space Ω is called discrete if its value range,
the set {X(ω) | ω ∈ Ω}, is finite or countably infinite. Since we only deal with
finite sample spaces, all random variables in this thesis will be discrete.

For an extensive overview of probability theory we refer to textbooks such
as [AL06] and [ADD99].

1In fact this is a simplification, since formally a probability space is a triple (Ω,F , P ), with
F ⊆P(Ω) a σ-field over Ω and P a function from F to [0..1]. F then defines the event space:
all events for which a probability has to be specified. Since in our case all sample spaces are
finite, F is always equal to the powerset of Ω. Hence, we omit F from the probability space.
For more details on probability spaces we refer to [Hal50].
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5.2 Conditional probabilities

In the remainder of this chapter, we often use the notion of conditional proba-
bilities. These probabilities are defined as follows in literature.

Definition 5.2. Let (Ω, P ) be a probability space and E1, E2 ∈ P(Ω) two
events. Then, if P (E2) > 0, the conditional probability of E1 given E2 is
defined by

P (E1 | E2) =
P (E1 ∩ E2)
P (E2)

If X,Y and two discrete random variables, the conditional probability distribu-
tion of X given Y = y is defined by

P[X = x | Y = y] =
P[X = x ∧ Y = y]

P[Y = y]

The following lemma is known from literature and will be useful in many
proofs.

Lemma 5.3. Let (Ω, P ) be a probability space and E1, E2, E3 ∈ P(Ω) three
events. Then, if P (E2 ∩ E3) > 0, the conditional probability of E1 given E2

and E3 is defined by

P (E1 | E2 ∩ E3) =
P (E1 ∩ E2 | E3)
P (E2 | E3)

5.3 The test case execution experiment

Consider the random experiment of executing a test case t once, without any
knowledge on fault presence. We define the random variable Xt,I as the trace
that this experiment yields given an implementation I.

Definition 5.4. For every test case t, the random variable Xt,I : Ω → exect
is the trace obtained when executing t once given an implementation I, without
any knowledge on fault presence.

Conform Definition 2.14, the outcomes of Xt,I are also called executions of
t. The subscript I will from now on be omitted, assuming an implicit imple-
mentation.

Note that we should formally define the underlying probability space (Ω, P ).
Recall that every ω ∈ Ω corresponds to the occurrence of a basic event in the
physical world, so in this case to the occurrence of a certain execution. The
function P maps each of these events on the probability of its occurrence. The
random variable Xt then maps every ω ∈ Ω on the trace in exect whose occur-
rence it represents. Therefore, P[Xt = σ] is the probability of the occurrence of
the execution σ.

For this, and all other random variables and function that will be defined,
the subscript t may be omitted in case it is clear from the context.

Example 5.5. Figure 5.1 shows a test case t with an estimated probability dis-
tribution of Xt. For example, in this case P[Xt = a? e! b? d! ] = 0.0062.
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Figure 5.1: A test case t with the probability distribution of Xt shown

Besides the experiment of executing a test case t once, we are also interested
in the experiment of executing it n times. The next definition formalises this
experiment, by applying the standard probability theory concepts of random
vectors and joint probability distributions.

Definition 5.6. The random vector Xn
t = (Xt, Xt, . . . , Xt) is the sequence of

executions that n trials of Xt yield.

Obviously, the value range of Xn
t is execnt . We assume that the probability

distributions of all trials are independent, resulting in the following proposition.

Proposition 5.7. Let t be a test case, and σ1, σ2, . . . σn ∈ t, then

P[Xn
t = (σ1, σ2, . . . , σn)] = P[Xt = σ1] · P[Xt = σ2] · · ·P[Xt = σn]

Example 5.8. Using the test case of Figure 5.1 once more, observe that P[X3
t =

(a? c!, a? e! b? d!, a? d! b? c!)] = 0.01 · 0.0062 · 0.6942 = 0.000043.
Note that this is the probability of obtaining these traces in this specific

order; the probability of obtaining them in any order is six times as high (six
being the number of permutations of the three traces).

To shorten the definitions that use sequences of executions, we introduce the
following notation.

Definition 5.9. Let E = (e1, e2, . . . , en) be an n-tuple of executions of some
test case t. Let σ ∈ t. Then

σv∃E
def
= ∃ei : σ v ei

σv∀E
def
= ∀ei : σ v ei

σv@ E
def
= @ei : σ v ei
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Example 5.10. Consider the sequence of executions E = (a? c!, a? e! b? d!).
Using Definition 5.9, we have a? e! b?v∃E, a?v∀E, and b?v@ E.

5.4 Trace occurrence and branching

It will prove useful to estimate how often test executions visit the state from
which a potential failure can occur. For a potential failure σa! this corresponds
to the probability of an execution starting with σ. To support these kinds of cal-
culations, the next definition gives the function pto, called the trace occurrence
function, that assigns to every trace σ its occurrence probability.

Definition 5.11. Let t be a test case. Then, the trace occurrence function of
t is the function pto

t : t→ [0..1] given for every σ ∈ t by

pto
t (σ) = P[σ v Xt]

Note that pto is not a distribution function, because an execution results in
the occurrence of several (partly overlapping) traces.

Example 5.12. Considering the test case of Figure 5.1 again, we can calculate
the function pto (using Definition 5.1). For instance,

pto
t (a? e! b?)

= P[a? e! b? v Xt]

=
∑

σ∈exect
a? e! b?vσ

P[Xt = σ]

= P[Xt = a? e! b? d!] + P[Xt = a? e! b? e!] + P[Xt = a? e! b? c!]
= 0.0062 + 0.2314 + 0.0099 = 0.2475

Besides defining the occurrence probability of each trace, we can also define
the probability distribution of the next output at each branching point in the
test case. The following definition formalises this by means of the branching
probability function pbr. For every inner trace σ it gives the probability distri-
bution of the next action from final(σ).

Definition 5.13. Let t be a test case. Then, the branching probability function
of t is the function pbr

t : innert → Distr(L) given for every σ ∈ innert, a ∈ L by

pbr
t (σ)(a) = P[σa v Xt | σ v Xt]

We will denote pbr
t (σ)(a) by pbr

t (a | σ), to remind the reader that it is the prob-
ability of an a-action under the condition that we already saw the trace σ.

Example 5.14. Considering the test case of Figure 5.1 once more, we can calcu-
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Figure 5.2: A test case with its branching probabilities pbr shown

late the function pbr. For instance,

pbr
t (d! | a? e! b?)

= P[a? e! b? d! v Xt | a? e! b? v Xt]

=
P[a? e! b? d! v Xt ∧ a? e! b? v Xt]

P[a? e! b? v Xt]

=
P[a? e! b? d! v Xt]
P[a? e! b? v Xt]

=

∑
σ∈exect

a? e! b?d!vσ

P[Xt = σ]

∑
σ∈exect

a? e! b?vσ

P[Xt = σ]

=
P[Xt = a? e! b? d!]

P[Xt = a? e! b? d!] + P[Xt = a? e! b? e!] + P[Xt = a? e! b? c!]

=
0.0062

0.0062 + 0.2314 + 0.0099
= 0.025

Figure 5.2 shows the values of pbr
t for all branches.

Although the functions pto and pbr and the probability distribution of Xt

will all be useful in the subsequent chapters, it is not necessary to specify them
separately. Obviously, only specifying the distribution of Xt would be sufficient,
since pto and pbr are defined based on it. However, it might be more intuitive to
specify pbr. As the next two propositions show that both pto and the complete
probability distribution of Xt are derivable from pbr, this would indeed suffice.
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Proposition 5.15. Let t be a test case, and σ = a0a1 . . . an ∈ t. Then, given
the function pbr

t , it is possible to derive pto
t (σ). Specifically,

pto
t (σ) =

n∏
i=0

pbr
t (ai | a0 . . . ai−1)

Proof. Let σ = a0a1 . . . an ∈ t. Then
n∏
i=0

pbr
t (ai | a0 . . . ai−1)

=
n∏
i=0

P[a0 . . . ai−1ai v Xt | a0 . . . ai−1 v Xt] {Def. of pbr}

=
n∏
i=0

P[a0 . . . ai−1ai v Xt ∧ a0 . . . ai−1 v Xt]
P[a0 . . . ai−1 v Xt]

{Def. of cond. prob.}

=
n∏
i=0

P[a0 . . . ai−1ai v Xt]
P[a0 . . . ai−1 v Xt]

{a0 . . . ai−1 v a0 . . . ai−1ai}

=
P[a0 . . . an v Xt]
P[a0 . . . a−1 v Xt]

{Basic rewriting}

=
P[σ v Xt]
P[ε v Xt]

{σ = a0 . . . an, a0 . . . a−1 = ε}

= P[σ v Xt] {Def. of v}
= pto

t (σ) {Def. of pto}

Example 5.16. Considering Figure 5.2, we calculate

pto
t (a? e! b? e!) = pbr

t (a? | ε) · pbr
t (e! | a?) · pbr

t (b? | a! e!) · pbr
t (e! | a! e! b?)

= 1 · 0.2475 · 1.0 · 0.935 = 0.2314

Proposition 5.17. Let t be a test case. Given the function pto
t , it is possi-

ble to derive the probability distribution function of Xt. Specifically, for every
σ ∈ exect

P[Xt = σ] = pto
t (σ)

Proof. Immediate from the definition of pto.

Proposition 5.15 and Proposition 5.17 result in the following corollary.

Corollary 5.18. Let t be a test case. Given the valuations of pbr
t , it is possible

to derive both the probability distribution of Xt and the valuations of pto
t .

5.5 Conditional branching probabilities

To calculate how certain we are of the absence of a fault after we have observed a
given number of executions that did not fail, we need to estimate the probability
that the fault results in a failure given its presence.

We first define the random variable of the state of presence of a fault. Every
fault is either present or absent, but we do not know this in advance.
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Definition 5.19. Let A be an LTS. Then, for each σ ∈ {σ′a | σ′ ∈ tracesA ∧
a ∈ LOA ∧ σ′a 6∈ tracesA}, the random variable SoPt(σ) is the state of presence
of σ in the system under test. The value range of SoPt(σ) is {present, absent}.

Based on SoP, we can now define the conditional branching probability func-
tion pcbr. It is similar to the previously defined branching probability function,
except that it now assumes the presence of the action for which it defines the
branching probability.

Definition 5.20. Let t be a test case for an LTS A. Then, the conditional
branching probability function of t is the function pcbr

t : innert × LOA → [0..1]
given for each σ ∈ innert, a ∈ LOA by

pcbr
t (σ, a) =

{
P[σa v Xt | σ v Xt ∧ SoPt(σa) = present] , if σa 6∈ tracesA
0 , otherwise

We will denote pcbr
t (σ, a) by pcbr

t (a | σ), to remind the reader that it is the prob-
ability of an a-action under the condition that we already saw the trace σ (given
the presence of σa).

The conditional branching probabilities will only be used for erroneous traces,
so pcbr(σ, a) need only be defined if σa 6∈ tracesA. For technical reasons, it has
been defined 0 for all correct traces.

Note that the probability of the occurrence of an erroneous trace might not
only depend on its own presence, but also on the presence of other faults. The
conditional branching probability function abstracts from this, and just specifies
the probability given its own presence. This probability is actually the average of
the occurrence probabilities given all combinations of present erroneous traces,
each weighted by the probability of that situation. Section 5.8.3 will elaborate
more on this matter.

5.6 The probabilistic execution model

Since we have shown that the probability distribution of Xt and the function
pto can be derived from pbr, the pair 〈pbr, pcbr〉 contains the probabilities that
are necessary to derive all others discussed in the previous sections. Therefore,
we define the probabilistic execution model as follows.

Definition 5.21. Let t be a test case, then its probabilistic execution model
is the pair 〈pbr

t , p
cbr
t 〉, with pbr

t its branching probability function and pcbr
t its

conditional branching probability function.

Analysing systems based on these two characterisations has been done in
literature before; for example, [RRS05] considers the ‘probability of transitions
between scenarios’ (corresponding to our pbr) and the reliability of components
(comparable to our pcbr, more precisely to 1− pcbr). Using these concepts, the
reliability of an entire system is calculated.

Example 5.22. Figure 5.3 shows the test case of Figure 5.2, now also showing
the conditional branching probabilities. For example, the probability of the
occurrence of c! from the state on the bottom left is 0.8 in case the corre-
sponding fault is present. Obviously, it is 0 in case the fault is absent. Not
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Figure 5.3: A test case with its probabilistic execution model shown

knowing whether or not it is present, the probability of the occurrence is 0.04.
Apparently, the probability of the presence of the fault has been estimated at
0.04/0.8 = 0.05.

5.7 Probabilistic fault automata

Instead of defining a probabilistic execution model 〈pbr, pcbr〉 for every test case
of a system, it is more practical to define it directly on its FA. To do so, we as-
sume that the probability distribution of output actions has not changed when
the system returns to a certain state after it has done some transitions. Fur-
thermore, we assume that observing a fault from some state s after a trace σ
does not necessarily mean that the same fault is also present from s after a trace
σ′ 6= σ. Future work attempting to incorporate potential dependencies might
be an interesting extension.

Probabilistic automata (PAs) have been defined by [Seg95], but a new notion
is needed for our purposes. After all, PAs assume a probability distribution over
all actions, while in our case a distinction is made between input and output
actions. Since input actions can always be performed with probability 1 when
specified by a test case, we only need to specify the probability distribution the
system employs ‘choosing’ its output actions. Furthermore, we need conditional
branching probabilities as well.

Definition 5.23. Let F = 〈A, r〉 be an FA, then a branching probability func-
tion for F is a function pbr

F : SA → Distr(LOA).

Definition 5.24. Let F = 〈A, r〉 be an FA, then a conditional branching prob-
ability function for F is a function pcbr

F : SA × LOA → [0..1].
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Figure 5.4: A probabilistic fault automaton

Definition 5.25. A probabilistic fault automaton (PFA) P is a triple 〈F ,
pbr
F , p

cbr
F 〉, where F is an FA, pbr

F a branching probability function for F and pcbr
F

a conditional branching function for F .

Example 5.26. Figure 5.4 shows an example of a PFA. The branching probabil-
ities of the output transitions, given by pbr, are shown on the transition arrows.
The conditional branching probabilities, given by pcbr, are shown in the error
weight boxes.

The following definition states when a branching probability function and a
conditional branching function for a test case are considered consistent with a
PFA.

Definition 5.27. Let P = 〈〈A, r〉, pbr
F , p

cbr
F 〉 be a PFA, t a test case for A, pbr

t

a branching probability function for t and pcbr
t a conditional branching function

for t. Then, pbr
t and pcbr

t are consistent with P if for all σ ∈ innert, a ∈ LA

pcbr
t (a | σ) = pcbr

F (final(σ), a)

pbr
t (a | σ) =

 1 , if a ∈ LI ∧ σa ∈ t
pbr
F (final(σ), a) , if a 6∈ LI ∧ σa ∈ t

0 , otherwise

Example 5.28. Figure 5.5 gives a test case for the LTS corresponding to the
PFA of Figure 5.4, with probability values assigned consistent with the PFA.

5.8 Deriving pcbr and pbr

So far, we assumed that the user of our framework is able to provide the functions
pcbr and pbr. It might, however, not be trivial to derive them. This section
therefore gives assistance in the process of obtaining pcbr and pbr.

The deriving process consists of four steps. First, we estimate the branching
probabilities assuming a flawless system. Second, we estimate for each fault
the probability of its presence. Third, we estimate the conditional branching
probabilities of erroneous traces. Fourth, the branching probabilities can be
calculated based on the above.
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Figure 5.5: A test case consistent with the PFA of Figure 5.4

5.8.1 Branching probabilities assuming a flawless system

The first step in deriving pcbr and pbr is obtaining the branching probabilities
assuming a flawless system. We therefore define the function pfbr, assigning to
each trace its branching probability given the absence of all faults.

Definition 5.29. Let t be a test case for an LTS A. Then, the flawless branch-
ing probability function of t is the function pfbr

t : innert → Distr(L) given for
every σ ∈ innert, a ∈ L by

pfbr
t (σ)(a) = P[σa v Xt | σ v Xt ∧ ∀σ′ ∈ t \ tracesA : SoPt(σ′) = absent]

Similar to our notation for pbr and pcbr, we will denote pfbr
t (σ)(a) by pfbr

t (a | σ).

Note that the flawless branching probability function is defined for all traces,
but that obviously for every erroneous trace σa we have pfbr(a | σ) = 0.

The flawless branching probabilities might be extracted from the specifica-
tion, known by the implementers or measured by running the system prior to
the testing phase.

Example 5.30. As an example for Definition 5.29, Figure 5.6 shows a test case
with flawless branching probabilities assigned. Since we assume a flawless sys-
tem, the erroneous transitions have been assigned probability 0.

5.8.2 Presence probabilities

The second step is to estimate the probability of the presence of each erroneous
trace. For this purpose we define the presence probability function ppr.



46 Chapter 5. Probabilities in test case executions

fail

fail pass fail fail pass fail

(a? (1.0)

(c! (0.0)(0.25) e! d! (0.75)

(1.0) b? b? (1.0)

(e! (1.0)(0.0) d! c! (0.0) (c! (1.0)(0.0) e! d! (0.0)

7

4 6 9 2

Figure 5.6: A test case including flawless branching probabilities

Definition 5.31. Let t be a test case, then a presence probability function for
t is a function ppr

t : errt → [0..1]. It maps each erroneous execution σ on the
probability that it is present in the implementation under test. For all σ ∈ errt

ppr
t (σ) = P[SoPt(σ) = present]

These probabilities might result from experience of the programmers, or can
be estimated based on the difficulty of the corresponding code (for instance by
means of McCabe’s cyclomatic complexity number [McC76]).

5.8.3 Deriving pcbr

The third step is to derive the valuation of pcbr for all erroneous traces in a test
case.

Estimating the conditional branching probability of a certain erroneous trace
could be difficult, since most of the times it will depend on the presence of other
faults as well. There might even be a different probability distribution for every
possible combination of present faults.

As an example, observe Figure 5.7. It gives a visual representation of the
four possible probability distributions from a state from which one correct out-
put action a! can take place, and two erroneous output actions b! and c! might
be able to take place. Normally the system chooses the a! action with prob-
ability 1. When an error has been made enabling the b! output, this occurs
with probability 0.7, and when c! is enabled it occurs 80 percent of the time.
However, when both are present together, the c! action has a higher priority
and ‘steals’ some of the probability mass of b!.

Note that in general the distribution of the case where several failures are
present cannot be calculated based on the individual occurrences, since more
information is needed about their mutual dependence.
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Figure 5.7: Failure probabilities

Now we define the specialised conditional branching probability function pscbr,
specifying for each erroneous trace its occurrence probability given exactly the
state of presence of all other faults.

Definition 5.32. Let t be a test case for an LTS A. Then, the specialised
conditional branching probability function of t is the function pscbr

t : innert ×
LO ×P(LO)→ [0..1] given for every σ ∈ innert, a ∈ LO, and F ∈ P(LO) by

pscbr
t (σ, a, F ) =


P[σa v Xt | σ v Xt∧

Errorst = {σF}] , if σa ∈ errt∧
∀b ∈ F : σb ∈ errt

0 , otherwise

where the notation {σF} is used to denote the set {σb | b ∈ F} and the notation
Errorst = Y is used as a shorthand for ∀σ′ ∈ errt\Y : SoPt(σ′) = absent ∧∀σ′ ∈
Y : SoPt(σ′) = present].

Specifying this function will probably be the most difficult part of the deriva-
tion process. However, we will show later on that an easy — and quite accurate
— approximation exists.
Example 5.33. The probabilities of the situation given by Figure 5.7, assuming
some trace σ leads to the top state, are described by the following specialised
conditional branching probability function:

pscbr(σ, a!,∅) = 0.0 pscbr(σ, b!,∅) = 0.0 pscbr(σ, c!,∅) = 0.0
pscbr(σ, a!, {a!}) = 0.0 pscbr(σ, b!, {a!}) = 0.0 pscbr(σ, c!, {a!}) = 0.0
pscbr(σ, a!, {b!}) = 0.0 pscbr(σ, b!, {b!}) = 0.7 pscbr(σ, c!, {b!}) = 0.0
pscbr(σ, a!, {c!}) = 0.0 pscbr(σ, b!, {c!}) = 0.0 pscbr(σ, c!, {c!}) = 0.8
pscbr(σ, a!, {a!, b!}) = 0.0 pscbr(σ, b!, {a!, b!}) = 0.0 pscbr(σ, c!, {a!, b!}) = 0.0
pscbr(σ, a!, {a!, c!}) = 0.0 pscbr(σ, b!, {a!, c!}) = 0.0 pscbr(σ, c!, {a!, c!}) = 0.0
pscbr(σ, a!, {b!, c!}) = 0.0 pscbr(σ, b!, {b!, c!}) = 0.3 pscbr(σ, c!, {b!, c!}) = 0.6
pscbr(σ, a!, {a!, b!, c!}) = 0.0 pscbr(σ, b!, {a!, b!, c!}) = 0.0 pscbr(σ, c!, {a!, b!, c!}) = 0.0

When all distributions are known, the normal conditional branching proba-
bilities can be obtained. The following proposition states how this is done.

Proposition 5.34. Let t be a test case for some LTS A and pscbr
t : innert ×

LO ×P(LO)→ [0..1] the specialised conditional branching probability function
for t. Then, for all σ ∈ innert, b! ∈ LO such that σb! 6∈ tracesA,

pcbr
t (b! | σ) =

∑
F∈P(LO)

∀a∈F :σa6∈tracesA

pscbr
t (σ, b!, F ) ·

∏
a∈F

ppr
t (σa)

∏
a∈LO\F
σa6∈t

(1− ppr
t (σa))

ppr
t (σb!)
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Proof. As mentioned before, Errorst = {σF} is used to denote the event that
exactly all faults in {σF} are present, while all other faults are absent. Note
that given some trace σ, the events {Errorst = {σF} | F ∈ P(LO) ∧ ∀a ∈ F :
σa 6∈ tracesA} together form a partition of the total probability mass.

Assume σ ∈ innert, and b! ∈ LO such that σb! 6∈ tracesA. Then

pcbr
t (b! | σ)

{Def. of pcbr, σb! 6∈ tracesA}
= P[σb! v Xt | σ v Xt ∧ SoPt(σb!) = present]
{Lemma 5.3}

=
P[σb! v Xt ∧ SoPt(σb!) = present | σ v Xt]

P[SoPt(σb!) = present | σ v Xt]
{Independence of SoPt(σb!) = present and σ v Xt}

=
P[σb! v Xt ∧ SoPt(σb!) = present | σ v Xt]

P[SoPt(σb!) = present]
{σb! v Xt implies SoPt(σb!) = present}

=
P[σb! v Xt | σ v Xt]

P[SoPt(σb!) = present]
{Law of total probability, the events Errorst = {σF} form a partition}

=
∑

F∈P(LO)
∀a∈F :σa6∈tracesA

P[σb! v Xt | σ v Xt ∧ Errorst = {σF}] · P[Errorst = {σF}]
P[SoPt(σb!) = present]

{Def. 5.32, restrictions on F , assumption that σb! 6∈ tracesA}

=
∑

F∈P(LO)
∀a∈F :σa6∈tracesA

pscbr(σ, b!, F ) · P[Errorst = {σF}]
P[SoPt(σb!) = present]

{Def. of P[Errorst = {σF}], Def. of ppr}

=
∑

F∈P(LO)
∀a∈F :σa6∈tracesA

pscbr
t (σ, b!, F ) ·

∏
a∈F

ppr
t (σa)

∏
a∈LO\F
σa6∈t

(1− ppr
t (σa))

ppr
t (σb!)

Example 5.35. We use Figure 5.7 once more, and assume again that some trace
σ leads to the top state. Furthermore, assume that for example ppr(σb!) = 0.02
and ppr(σc!) = 0.05. We are now able to calculate the conditional branching
probabilities of b! and c!. All terms of pcbr(b! | σ) for which b! is not included
in F are omitted for brevity, since these terms are zero anyway. The same has
been done for pcbr(c! | σ).

pcbr(b! | σ) =
(
pscbr(σ, b!, {b!}) · ppr(σb!) · (1− ppr(σc!))

+pscbr(σ, b!, {b!, c!}) · ppr(σb!) · ppr(σc!)
)
/ppr(σb!)

= (0.7 · 0.02 · (1− 0.05) + 0.3 · 0.02 · 0.05) /0.02 = 0.68
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pcbr(c! | σ) =
(
pscbr(σ, c!, {c!}) · ppr(σc!) · (1− ppr(σb!))

+pscbr(σ, c!, {b!, c!}) · ppr(σb!) · ppr(σc!)
)
/ppr(σc!)

= (0.8 · 0.05 · (1− 0.02) + 0.6 · 0.02 · 0.05) /0.05 = 0.796

As indicated by the example, the conditional branching probability of a fault
in general seems to be fairly well approximated by the occurrence probabilities
given no other faults are present. Put formally, pcbr(a! | σ) ≈ pscbr(σ, a!, {a!}).

This is indeed true when the ppr-values are small, because in that case the
probability to have multiple faults present is very small. It also holds when the
conditional branching probabilities in all fault presence scenarios are similar to
the individual occurrence probabilities, because in that case it does not matter
whether one or more faults are present. In practice, one might therefore choose
to use these approximations, instead of estimating all the possible probability
distributions.

5.8.4 Deriving pbr

Using the previously obtain values of ppr and pcbr for the erroneous traces and
pfbr for the correct traces, the values of pbr are derivable.

Proposition 5.36. Let t be a test case for an LTS A. Then, for all σ ∈ innert,
a ∈ L,

pbr(a | σ) =



pcbr(a | σ) · ppr(σa) , if σa ∈ t \ tracesA

pfbr(a | σ) ·

1−
∑

b!∈LO
σb!6∈tracesA

pbr(b! | σ)

 , if σa ∈ t ∩ tracesA

0 , otherwise

Proof.

• σa ∈ t \ tracesA

pbr(a | σ)

{Def. of pbr}
= P[σa v Xt | σ v Xt]
{Def. of conditional probabilities}

=
P[σa v Xt ∧ σ v Xt]

P[σ v Xt]
{Basic rewriting}

=
P[σa v Xt ∧ σ v Xt]

P[σ v Xt] · P[SoPt(σa) = present]
· P[SoPt(σa) = present]

{Independence of P[σ v Xt] and P[SoPt(σa) = present]}

=
P[σa v Xt ∧ σ v Xt]

P[σ v Xt ∧ SoPt(σa) = present]
· P[SoPt(σa) = present]

{σa v Xt implies SoPt(σa) = present}

=
P[σa v Xt ∧ σ v Xt ∧ SoPt(σa) = present]

P[σ v Xt ∧ SoPt(σa) = present]
· P[SoPt(σa) = present]
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{Def. of conditional probabilities}
= P[σa v Xt | σ v Xt ∧ SoPt(σa) = present] · P[SoPt(σa) = present]

{Def. of pcbr, σa 6∈ tracesA (because of the case distinction)}
= pcbr(a | σ) · P[SoPt(σ) = present]
{Def. of ppr}
= pcbr(a | σ) · ppr(σa)

• σa ∈ t ∩ tracesA

pbr(a | σ)

{Def. of pbr}
= P[σa v Xt | σ v Xt]
{Def. of conditional probabilities}

=
P[σa v Xt ∧ σ v Xt]

P[σ v Xt]
{Basic rewriting}
= P[σa′ v Xt such that σa′ ∈ tracesA | σ v Xt]·

P[σa v Xt ∧ σ v Xt]
P[σ v Xt] · P[σa′ v Xt such that σa′ ∈ tracesA | σ v Xt]

{Def. of conditional probabilities}
= P[σa′ v Xt such that σa′ ∈ tracesA | σ v Xt]·

P[σa v Xt ∧ σ v Xt]
P[σ v Xt ∧ σa′ v Xt such that σa′ ∈ tracesA]

{σa v Xt implies σa′ v Xt such that σa′ ∈ tracesA}
= P[σa′ v Xt such that σa′ ∈ tracesA | σ v Xt]·

P[σa v Xt ∧ σ v Xt ∧ σa′ v Xt such that σa′ ∈ tracesA]
P[σ v Xt ∧ σa′ v Xt such that σa′ ∈ tracesA]

{Def. of conditional probabilities}
= P[σa′ v Xt such that σa′ ∈ tracesA | σ v Xt]·

P[σa v Xt | σ v Xt ∧ σa′ v Xt such that σa′ ∈ tracesA]
{Assuming σ v Xt ∧ σa′ v Xt such that σa′ ∈ tracesA is equivalent

to assuming σ v Xt and the absence of all errors, because σ v Xt

already implies that no errors occur until the last step, and σa′ v Xt

such that σa′ ∈ tracesA implies no errors occur in the last step}
= P[σa′ v Xt such that σa′ ∈ tracesA | σ v Xt]·

P[σa v Xt | σ v Xt ∧ ∀σ′ ∈ t \ tracesA : SoPt(σ′) = absent]

{Def. of pfbr}
= P[σa′ v Xt such that σa′ ∈ tracesA | σ v Xt] · pfbr(a | σ)
{Basic probability theory}
= (1− P[σa′ v Xt such that σa′ 6∈ tracesA | σ v Xt]) · pfbr(a | σ)
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{Basic rewriting}

=

1−
∑

b!∈LO
σb!6∈tracesA

P[σb! v Xt | σ v Xt]

 · pfbr(a | σ)

{Def. of pbr}

=

1−
∑

b!∈LO
σb!6∈tracesA

pbr(b! | σ)

 · pfbr(a | σ)

• Otherwise
By ioco theory, traces not included in a test case will never occur during
an execution. Therefore, their branching probability is obviously 0.

Example 5.37. As an example consider the test case of Example 5.30 again.
Figure 5.8 shows it once more, now with estimations of the conditional branch-
ing probabilities of the erroneous output actions. These probabilities have been
denoted between parentheses next to the dashed arrows. Furthermore, the pres-
ence of every fault is assumed to be 0.05. Based on these values and the proba-
bilities of the correct behaviour (shown in Figure 5.6), the branching probability
function has been derived and shown in the figure. The probabilities in this test
case together form the probabilistic execution model.

fail

fail pass fail fail pass fail

(a? (1.0)

(c!(0.01)(0.2475) e! d! (0.7425)

(1.0) b? b? (1.0)

(e!(0.935)(0.025) d! c! (0.04) (c!(0.935)(0.03) e! d! (0.035)

7

(0.2)

4

(0.5)

6

(0.8)

9

(0.6)

2

(0.7)

Figure 5.8: A test case with pbr and pcbr shown
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pass fail fail pass

(0.99) a! b! (0.01)

(0.98) a! (b! (0.2) ((0.4) b! a! (0.92)

10

(1.0)

10

(1.0)

Figure 5.9: A test case t

5.9 Risk-based testing

In the framework of [BBS06] error weights represent the severity of the occur-
rence of a failure. However, as is known from literature on risk-based testing
[Aml00], the risk of a fault is the severity of its occurrence multiplied by the
probability of its occurrence. Since precisely these probabilities were derived in
this chapter, we are now able to transform error weights into error risks.

First, an example is given to motivate this extension.
Example 5.38. Let t be the test case depicted in Figure 5.9. The occurrences
of the erroneous traces a! b! and b! b! are considered equally bad, but
the probability that a! b! actually occurs is much higher. It therefore seems
reasonable to assume that it is more important to cover a! b! in a test case
than to cover b! b!.

The important observation is that a fault that would cause severe problems
in case it occurs, but that can approximately never occur in practice, can still be
considered less important to fix than a fault with a lower severity but occurring
all the time.

One simple way to incorporate these concerns in our framework is to let the
user assign error weights in such a way that they directly represent the error risk.
Stated differently, he should specify the importance of preventing the existence
of a fault, instead of the severity of its occurrence. However, this process can
also be automated by the function given in the next definition, discounting error
weights by the probability of the occurrence of the associated error. Applying
this function, the user can just assign weights in such a way that they represent
how bad it would be if the error would occur, not worrying about the probability
of occurrence yet.

Definition 5.39. Let t be a test case for an LTS A = 〈S, s0, L,∆〉 and f a
weighted fault model consistent with A. Then, the weighted fault model based
on f and discounted by pto

t is the function fptot : L∗ → R≥0, such that for all
σ ∈ L∗

fptot (σ) = pto
t (σ)f(σ)

Obviously this changes the total coverage by some factor, but if desirable
this could easily be annulled by multiplying each error weight by that factor.
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pass fail fail pass

(0.99) a! b! (0.01)

(0.98) a! (b! (0.2) ((0.4) b! a! (0.92)

1.98

(1.0)

0.04

(1.0)

Figure 5.10: The test case of Figure 5.9 with error risks

However, since the absolute magnitude of error weights was already quite arbi-
trary and does not matter at all for the relative coverage, this does not seem
necessary.

Example 5.40. Again consider the test case of Figure 5.9. The error weights
when using fptot instead of f are visualized in Figure 5.10. Clearly, the weights
now support the believe that it is more important to prevent the existence of
the erroneous trace a! b! than to prevent the existence of b! b!.

Discussion
When our aim is to let a high relative coverage correspond with covering most
errors that we definitely need to fix, using fptot clearly gives better results. How-
ever, if we want to really address how many faults are actually covered by a test
case, independent of whether or not they appear often, it is better to use f .

Since all methods developed in this framework just expect some weighted
fault model, they can be used no matter whether f or fptot is appropriate. We
choose to use the non-discounted version in our definitions, but by replacing
each f by fptot one directly obtains the same methods applied to the situation
where error weights are discounted by a trace occurrence function.

Note that it seems appropriate to at least set the error weight of all unreach-
able faults to zero. That way, actual coverage is not influenced by faults that
would never occur anyway.





Chapter 6
Evaluating actual coverage

Having defined all important probabilities by means of the probabilistic execu-
tion model, we now define our measures of coverage.

First, we discuss a rudimentary definition of fault coverage. It states that
an erroneous trace σa is covered by an execution in case that execution starts
with σ.

Second, we extend this definition to incorporate how certain we are of the
absence of faults we have not observed. We define the coverage probability of
some trace after a sequence of executions as the probability that we would have
observed it in case it was present. Fault coverage is defined as the product of
error weight and coverage probability. The actual coverage of an execution or
sequence of executions is then defined as the sum of all fault coverages obtained
by it. An appealing property of the definition of actual coverage is that the only
probabilities it requires are the conditional branching probabilities of erroneous
traces. Therefore, we do not need to estimate presence probabilities if we only
want to evaluate actual coverage.

Finally, we look at an alternative definition of the coverage probabilities,
defining them as the probability that the state of presence of a fault is equal
to its observed state of presence. This way, however, we actually calculate the
reliability of the system instead of coverage. We leave it to the user of the
framework to choose which method to apply.

Organisation of this chapter
Section 6.1 describes the basic notion of fault coverage, followed by the more
involved coverage probabilities in Section 6.2. Section 6.3 applies these proba-
bilities to define fault coverage and actual coverage. The alternative definition
of coverage probabilities is discussed in Section 6.4.

6.1 Basic notion of fault coverage

When executing a test case once, either one failure occurs or no failures occur.
In the first case, obviously, the presence of a fault has been proved. In the
second case, however, we have also learned something about the faults that did
not result in a failure. After all, the fact that some failures did not occur even

55
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though they were enabled, increases the confidence in their absence. Note that
this also holds for traces that do result in a failure, up until the failure occurs.

Our most rudimentary form of coverage states that given an execution ex-
actly every fault that either resulted in a failure or could have resulted in a
failure is covered by that execution. Technically, a fault σa is covered by an
execution in case that execution starts with σ.

Definition 6.1. Let t be a test case and σ ∈ exect. Then, a trace σ′a ∈ t is
covered by σ if σ′ v σ.

If E = (e1, e2, . . . , en) is an n-tuple of executions of t, then a trace σ′a ∈ t
is covered by E if σ′v∃E.

Example 6.2. Looking again at Figure 5.3, consider the sequence of executions
E = (a? e! b? e!, a? c!). Applying Definition 6.1 we find that E covers the
erroneous traces a? c!, a? e! b? d! and a? e! b? c!. After all, a? and a? e!
b? are prefixes of a? e! b? e!. On the other hand we see that a? d! b? e! and
a? d! b? d! are not covered by a? e! b? e!. This is because a? d! b? is not a
prefix of either a? e! b? e! or a? c!.

6.2 Coverage probabilities

Although the notion provided by Definition 6.1 gives a basic idea of the coverage
of an execution or sequence of executions, it does not take into account how
certain we are of the actual absence of each fault that was covered by appearing
absent.

The following definition provides a notion of coverage that does take this into
account. Instead of just being covered or not covered by an n-tuple of executions
E = (e1, e2, . . . , en), every fault σa! is assigned a coverage probability pcov. The
definition is based on the number of executions c that reached the state from
which the fault could occur but did not, so technically c = |{i | σ v ei}|.

The coverage probability pcov
t (σa!, E) is defined as the probability that σa!

is observed at least once, given that final(σ) is reached c times.
If a fault has been observed, we are certain of its presence, so we assign it a

coverage probability of 1.

Definition 6.3. Let t be a test case and σa! ∈ errt. Let E = (e1, e2, . . . , en) be
an n-tuple of executions of t. Then, the coverage probability pcov

t of σa! after
E is defined by

pcov
t (σa!, E)

=


1 , if σa!v∃E
0 , if σv@ E
P[σa!v∃Xc

t | σv∀Xc
t ∧ SoPt(σa!) = present] , otherwise, with

c = |{i | σ v ei}|

For single executions σ′ ∈ exect, this degenerates to

pcov
t (σa!, σ′) =

 1 , if σa! v σ′
0 , if σ 6v σ′
P[σa! v Xt | σ v Xt ∧ SoPt(σa!) = present] , otherwise
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The next definition provides a shorthand notation, indicating the coverage
probability after any sequence of executions with a certain number of executions
covering a fault but none showing its presence.

Definition 6.4. Let t be a test case and σa! ∈ errt. Let c be any natural
number. Then we define

pcov
t (σa!, c) = P[σa!v∃Xc

t | σv∀Xc
t ∧ SoPt(σa!) = present]

Corollary 6.5. Let t be a test case and σa! ∈ errt. Then, the coverage prob-
ability pcov

t of σa! after any sequence of executions E = (e1, e2, . . . , en) with
c = |{i | σ v ei}| and σa!v@ E is given by pcov

t (σa!, c).

Proof. Immediate from Definition 6.3 and Definition 6.4.

The next proposition provides a formula for the calculation of pcov
t (σa!, c).

Proposition 6.6. Let t a test case and σa! ∈ errt. Then, for every c ∈ N

pcov
t (σa!, c) = 1−

(
1− pcbr

t (a! | σ)
)c

Proof. Let t a test case, σa! ∈ errt, and c ∈ N. Then

pcov
t (σa!, c)
{Def. of pcov}
= P[σa!v∃Xc

t | σv∀Xc
t ∧ SoPt(σa!) = present]

{Basic prob. theory and logic}
= 1− P[σa!v@ X

c
t | σv∀Xc

t ∧ SoPt(σa!) = present]
{Def. of conditional probabilities}

= 1− P[σa!v@ X
c
t ∧ σv∀Xc

t ∧ SoPt(σa!) = present]
P[σv∀Xc

t ∧ SoPt(σa!) = present]
{Prop. 5.7}

= 1− (P[σa! 6v Xt ∧ σ v Xt ∧ SoPt(σa!) = present])c

(P[σ v Xt ∧ SoPt(σa!) = present])c

{Def. of conditional probabilities}
= 1− (P[σa! 6v Xt | σ v Xt ∧ SoPt(σa!) = present])c

{Basic probability theory}
= 1− (1− P[σa! v Xt | σ v Xt ∧ SoPt(σa!) = present])c

{Def. of pcbr, σa ∈ errt}

= 1−
(
1− pcbr(a! | σ)

)c
Note that the number of times σa! occurs given c executions starting with

σ is easily seen to be binomially distributed with parameters n = c and p =
pcbr(a! | σ). The proposition then follows immediately from basic probability
theory.

Example 6.7. Looking again at Figure 5.3, consider the sequence of executions
E = {a? e! b? d!, a? d! b? e!}. We want to derive the coverage probability
of the erroneous trace a? c!. Since both executions cover a? c!, we have
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c = 2. Therefore, pcov(a? c!, E) = pcov(a? c!, 2) = 1 − (1 − pcbr(c! | a?))2 =
1− (1− 0.2)2 = 0.36.

Furthermore, pcov(a? e! b? d!, E) = 1, because this erroneous trace is shown
to be present by the first execution of E.

6.2.1 Obtaining a certain coverage probability

Besides calculating the coverage probability of a fault based on a given sequence
of executions, one might also need to know how often to test to obtain a certain
coverage probability p. Fortunately, it is not difficult to obtain the inverse of
pcov
t (σa!, E). In this calculation we assume that the fault to be proved absent

does not result in a failure, because such a failure already shows its presence. It
is therefore in that case not possible anymore to prove its absence with a given
certainty.

Proposition 6.8. Let t be a test case and σa! ∈ errt. Let c be the number of
times σa! is observed absent. Then

pcov
t (σa!, E) ≥ p iff c ≥

⌈
log(1− p)

log(1− pcbr
t (a! | σ))

⌉
Proof.

pcov
t (σa!, E) = 1− (1− pcbr

t (a! | σ))c ≥ p

if and only if

(1− pcbr
t (a! | σ))c ≤ 1− p

if and only if

c ≥
⌈

log(1− p)
log(1− pcbr

t (a! | σ))

⌉
Example 6.9. Assume some erroneous output σa! has an occurrence probability
of pcbr(a! | σ) = 0.2. We want to obtain a coverage probabilities of 0.95. Us-
ing the formula derived above, we apparently need at least

⌈
log(1−0.95)

log(1−pcbr(a!|σ))

⌉
=⌈

log(1−0.95)
log(1−0.2)

⌉
= d13.4e = 14 executions that cover σa! (but not show its pres-

ence).

6.3 Fault coverage and actual coverage

Based on the coverage probability, we can now define a more involved notion
of fault coverage. The coverage of a fault is simply defined as its error weight
multiplied by the coverage probability. This way, the fault coverage of a fault
that was observed to be present is just equal to its error weight. For all other
faults, however, the error weights are weighed themselves to incorporate the fact
that some are expected to be absent with more certainty than others.
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Definition 6.10. Let A be an LTS, t a test case for A, σ an execution of t and
f a weighted fault model consistent with A. Furthermore, let σ′a! ∈ errt. Then,
the fault coverage of σ′a! by σ, denoted by faultCovt(σ′a!, σ, f), is defined by

faultCovt(σ
′a!, σ, f) = f(σ′a!) · pcov

t (σ′a!, σ)

Let E = (e1, e2, . . . , en) be an n-tuple of executions of t, then we define

faultCovt(σ
′a!, E, f) = f(σ′a!) · pcov

t (σ′a!, E)

When executing a test case, several faults might be covered. The notion of
the actual coverage of an execution deals with this fact. It defines the coverage
of a given execution or sequence of executions as the sum of the fault coverages
of all faults in the system.

Similar to the framework on potential coverage, we define absolute and rel-
ative coverage measures.

Definition 6.11. Let A be an LTS, t a test case for A, σ an execution of t and
f a weighted fault model consistent with A. Then, the absolute actual coverage
of σ, denoted by absCovt(σ, f), is defined by

absCovt(σ, f) =
∑

σ′a!∈errt

faultCovt(σ
′a!, σ, f)

The absolute actual coverage of an n-tuple of executions E, denoted by
absCovt(E, f), is defined by

absCovt(E, f) =
∑

σ′a!∈errt

faultCovt(σ
′a!, E, f)

The relative actual coverage of an execution σ, denoting the fraction of the
total error weight that is actually covered, is written relCovt(σ, f). Similarly, the
relative actual coverage of an n-tuple of executions E is written relCovt(E, f).
These coverages are defined by

relCovt(σ, f) =
absCovt(σ, f)

totCov(f)

relCovt(E, f) =
absCovt(E, f)

totCov(f)

Recall that totCov was introduced in Definition 2.19 on page 15.
Example 6.12. Consider the test case depicted in Figure 6.1, with its proba-
bilistic execution model shown. For this test case, one possible execution σ is
a? e! b? d! (denoted by the thick arrows). The erroneous trace a? c! is covered
by σ, since a? is one of its prefixes. Also, σ covers a? e! b? d! and a? e! b? c!.
Applying the definitions of actual coverage yields

absCov(σ, f) = 7 · pcov(a? c!, σ) + 4 · pcov(a? e! b? d!, σ)
+ 6 · pcov(a? e! b? c!, σ)

= 7 · pcov(a? c!, 1) + 4 · 1
+ 6 · pcov(a? e! b? c!, 1)

= 7 · 0.2 + 4 · 0.5 + 6 · 0.8 = 8.2



60 Chapter 6. Evaluating actual coverage

fail

fail pass fail fail pass fail

(a? (1.0)

(c!(0.01)(0.2475) e! d! (0.7425)

(1.0) b? b? (1.0)

(e!(0.935)(0.025) d! c! (0.04) (c!(0.935)(0.03) e! d! (0.035)

7

(0.2)

4

(0.5)

6

(0.8)

9

(0.6)

2

(0.7)

Figure 6.1: Test case with its probabilistic execution model shown

Note that the faults that were not covered by σ have been omitted from the
calculation, since these have a coverage probability of zero anyway.

Using this result, we immediately obtain relCov(σ, f) = 8.2
28 = 0.29 (assuming

the error weights shown are the only ones in the system).
For the execution sequence E = (a? e! b? e!, a? e! b? e!, a? d! b? c!), ap-

plying the definitions yields

absCov(E, f) = 7 · pcov(a? c!, E)
+ 4 · pcov(a? e! b? d!, E)
+ 6 · pcov(a? e! b? c!, E)
+ 9 · pcov(a? d! b? e!, E)
+ 2 · pcov(a? d! b? d!, E)

= 7 · pcov(a? c!, 3)
+ 4 · pcov(a? e! b? d!, 2)
+ 6 · pcov(a? e! b? c!, 2)
+ 9 · pcov(a? d! b? e!, 1)
+ 2 · pcov(a? d! b? d!, 1)

= 18.976

Furthermore, relCov(E, f) = 18.976
28 = 0.68.

6.4 Another approach to coverage probabilities

Our approach to coverage probabilities has a significant advantage: it only uses
the function pcbr, not the function pbr. The evaluation of actual coverage can
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therefore be performed without having to estimate presence probabilities or
branching probabilities.

However, in case we do not mind also specifying pbr, an alternative approach
is possible. We can then define the coverage probability of a fault as the prob-
ability that its state of presence is equal to its observed state of presence. In
the examples of the remaining chapters, we will still use the original coverage
probabilities.

To define the alternative coverage probabilities, we first formally define the
observed state of presence of an erroneous execution.

Definition 6.13. Let t a test case for an LTS A, σ′ ∈ errt, and σ ∈ exect.
Then, the observed state of presence of σ′ after σ, observedSoP(σ′, σ), is defined
by

observedSoP(σ′, σ) =
{

present , if σ′ v σ
absent , otherwise

Let E = (e1, e2, . . . , en) be an n-tuple of executions of t, then we define

observedSoP(σ′, E) =
{

present , if σ′v∃E
absent , otherwise

Note that the observed state of presence does not necessarily coincide with
the actual state of presence. If we observed the presence of a fault, however, it
does.

Example 6.14. Looking again at Figure 5.3, consider the sequence of executions
E = (a? e! b? e!, a? c!). Applying Definition 6.13 we immediately obtain that

observedSoP(a? , E) = present
observedSoP(a? e! b? c! , E) = absent

Definition 6.15. Let t be a test case and σa! ∈ errt. Let E = (e1, e2, . . . , en)
be an n-tuple of executions of t. Then, the coverage probability pcov

t of σa! after
E is defined by

pcov
t (σa!, E) = P[SoPt(σa!) = observedSoP(σ′a!, E) | Xn

t = E]

For single executions σ′ ∈ exect this degenerates to

pcov
t (σa!, σ′) = P[SoPt(σa!) = observedSoP(σa!, σ′) | Xt = σ′]

In case an execution shows the presence of a fault, pcov
t is obviously 1. The

next proposition provides a formula for calculating pcov for a fault whose pres-
ence was not yet shown.

Proposition 6.16. Let t be a test case, and σa! ∈ errt. Furthermore, let
E = (e1, e2, . . . , en) be an n-tuple of executions of t, such that σa!v@ E. Let
c = |{i | σ v ei}|. Then

pcov
t (σa!, E) =

1− pbr
t (a!|σ)

pcbr
t (a!|σ)

1− pbr
t (a!|σ)

pcbr
t (a!|σ)

+ (1− pcbr
t (a! | σ))c · p

br
t (a!|σ)

pcbr
t (a!|σ)
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Proof. Let σa! ∈ errt. For layout purposes, let H1 denote SoPt(σa!) = absent,
and let H2 denote SoPt(σa!) = present. Let H3 denote the event Xc

t =
(e1, . . . , ec) such that |{i | σa! v ei}| = 0 and |{i | σ v ei}| = c.

The definition of ppr and the proof of Proposition 5.36 immediately lead to

P[H2] = ppr
t (σa!) =

pbr
t (a! | σ)

pcbr
t (a! | σ)

and because H1 and H2 form a partition it also leads to

P[H1] = 1− P[H2] = 1− pbr
t (a! | σ)

pcbr
t (a! | σ)

Furthermore, the following conditional probabilities are relevant.

P[H3 | H1] = pto
t (σ)c · 1

P[H3 | H2] = pto
t (σ)c · (1− pcbr

t (a! | σ))c

The factor pto
t (σ)c is just the probability of |{i | σ v ei}| = c, since H1 and H2

do not have any influence on this.
Then, given H1, σa! is impossible, so the probability of |{i | σa! v ei}| = 0 is

1. Given H2, this probability is evidently (1−pcbr
t (a! | σ))c, since all c executions

should not take the a! branch of which we know it is present.
Now

pcov(σa!, E)
{Def. of pcov}
= P[H1 | Xn

t = E]
{Executions not covering σa! do not influence the probability of H1}
= P[H1 | H3]
{Bayes’ theorem}

=
P[H3 | H1] · P[H1]

P[H3 | H1] · P[H1] + P[H3 | H2] · P[H2]
{The probabilities derived above}

=
pto
t (σ)c ·

(
1− pbr

t (a!|σ)

pcbr
t (a!|σ)

)
pto
t (σ)c ·

(
1− pbr

t (a!|σ)

pcbr
t (a!|σ)

)
+ pto

t (σ)c ·
(
1− pcbr

t (a! | σ)
)c · pbr

t (a!|σ)

pcbr
t (a!|σ)

{Basic rewriting}

=
1− pbr

t (a!|σ)

pcbr
t (a!|σ)

1− pbr
t (a!|σ)

pcbr
t (a!|σ)

+
(
1− pcbr

t (a! | σ)
)c · pbr

t (a!|σ)

pcbr
t (a!|σ)

Example 6.17. Looking again at Figure 5.3, consider the sequence of executions
E = {a? e! b? d!, a? d! b? e!}. We want to calculate pcov(a? c!, E). Notice
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first that both executions cover a? c!, so k = 2. Therefore,

pcov(a? c!, E) = pcov(a? c!, 2)

=
1− pbr(c!|a?)

pcbr(c!|a?)

1− pbr(c!|a?)
pcbr(c!|a?)

+ (1− pcbr(c! | a?))2 ·
(
pbr(c!|a?)
pcbr(c!|a?)

)
=

1− 0.01
0.2

1− 0.01
0.2 + (1− 0.2)2 ·

(
0.01
0.2

)
=

0.95
0.95 + 0.032

= 0.9674

As another example, pcov(a? e! b? d!, E) = 1, since this erroneous trace is
shown to be present by the first execution of E.

6.4.1 Obtaining a certain coverage probability

Again, we can calculate how often to test to obtain a certain coverage probability
pcov.

Proposition 6.18. Let t be a test case and σa! ∈ errt. Let c be the number of
times σa! is observed absent. Let ppr

t (σa!) be a shorthand for pbr
t (σ,a!)

pcbr
t (σ,a!)

. Then

pcov(σa!, E) ≥ k iff c ≥



log

 1−ppr
t (σa!)
k − 1 + ppr

t (σa!)
(ppr
t (σa!))


log(1− pcbr

t (σ, a!))


Proof.

pcov
t (σa!, E) =

1− ppr
t (σa!)

1− ppr
t (σa!) + (1− pcbr

t (a! | σ))c · ppr
t (σ, a!)

≥ k

if and only if

1− ppr
t (σa!) + (1− pcbr

t (a! | σ))c · ppr
t (σa!) ≤ 1− ppr

t (σa!)
k

if and only if

(1− pcbr
t (a! | σ))c · ppr

t (σa!) ≤ 1− ppr
t (σa!)
k

− 1 + ppr
t (σa!)

if and only if

(1− pcbr
t (a! | σ))c ≤

1−ppr
t (σ,a!)
k − 1 + ppr

t (σa!)
ppr
t (σa!)
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if and only if

c ≥


log

(
1−ppr

t (σa!)
k − 1 + ppr

t (σa!)
ppr
t (σa!)

)
log(1− pcbr

t (a! | σ))


Example 6.19. Assume some erroneous output σa! has a conditional branch-
ing probability pcbr(a! | σ) = 0.2, and a ratio ppr(σa!) = pbr(a!|σ)

pcbr(a!|σ)
= 0.05.

We want to limit the probability of its presence to 1 percent, so formally
pcov(σa!, E) ≥ 0.99. Using the formula derived above, we apparently need
at least

⌈
log(19/99)
log(0.8)

⌉
≈ d7.4e = 8 executions that cover σa! (but not show its

presence).

Discussion
We described two different ways of defining coverage probabilities. Although
they seem quite similar, the impact of choosing one is significantly large.

Using the first definition of coverage probabilities, our notions of coverage
indicate how many faults we actually covered. No matter how likely the presence
of a fault is, we need to show its absence before we consider it covered. Moreover,
the certainty of their absence is solely based on how likely it was to observe the
fault in case it is present. A major advantage of this approach is that only the
conditional branching probabilities are needed for our calculations.

Using the second definition of coverage probabilities, our notions of coverage
indicate the reliability of the system. Because it incorporates the probability
that faults are present, a high coverage probability is achieved for all sporadic
faults without even having to test. After all, if the presence probability of
a certain fault is low, the probability that it is absent is already high before
testing has started.

Although both methods might be useful for different purposes, for our work
it seems more appropriate to choose the first. That way, actual coverage denotes
which faults were actually covered. As a pleasant side effect, less probabilities
have to be estimated.



Chapter 7
Predicting actual coverage

This chapter discusses the actual coverage distribution of test cases, using the
notion of actual coverage of the previous chapter. The distribution is represented
by a random variable, denoting the actual coverage obtained by running a test
case once or several times.

After describing the probability distribution of actual coverage we provide
formulae for the calculation of its expected value and variance. We first present
the case where a test case is executed just once, and then discuss the case where
it is executed a certain number of times (since the former yields much easier
formulae). We show that the expected value for both cases can be calculated in
polynomial time, while this does not appear possible for the variance.

Furthermore, we show the important property that the expected value of the
actual coverage of n executions of a test case is equal to its potential coverage
if we take the limit of n to infinity.

We conclude by proposing an approximation for the calculation of expected
actual coverage, chosen such that the only probabilities necessary are the con-
ditional branching probabilities. Therefore, using this approximation we do not
need to estimate presence probabilities anymore.

Organisation of this chapter
Section 7.1 states the probability distribution of the actual coverage of test cases,
followed by its expected value in Section 7.2. Section 7.3 provides formulae for
the variance. Finally, Section 7.4 discusses the approximation mentioned above.

7.1 Probability distributions for actual coverage

We first define the random variables for the absolute and relative actual coverage
for a single execution, and derive their probability distribution functions. Then,
we do the same for a sequence of executions. Important properties such as their
expected value and variance and postponed to later sections.

Definition 7.1. Let t be a test case for an LTS A and f a weighted fault
model consistent with A. Then, the random variable At,f is the absolute actual
coverage of Xt given the weighted fault model f . Furthermore, Rt,f is its relative

65
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actual coverage. Formally, we define

At,f = absCovt(Xt, f)
Rt,f = relCovt(Xt, f)

Proposition 7.2. The probability distribution functions of the random variables
At,f and Rt,f are given by

P[At,f = x] =
∑

σ∈exect
absCovt(σ,f)=x

P[Xt = σ]

P[Rt,f = x] = P[At,f = x · totCov(f)]

Proof.

P[At,f = x]
= P[absCovt(Xt, f) = x] {Def. of A}

=
∑

σ∈exect
absCovt(σ,f)=x

P[Xt = σ] {Basic prob. theory}

The probability distribution function of Rt,f follows directly from the definition
of relative actual coverage.

Definition 7.1 defines the actual coverage of a test case for only one execution.
In practice, however, one might execute a test case several times to reveal more
faults. The following definition deals with this fact, defining actual coverage for
such a sequence of executions of a test case.

Definition 7.3. Let t be a test case for an LTS A and f a weighted fault model
consistent with A. Let n ∈ N be the number of times t is executed. Then we
define

Ant,f = absCovt(Xn
t , f)

Rnt,f = relCovt(Xn
t , f)

Proposition 7.4. The probability distribution functions of the random variables
Ant,f and Rnt,f are given by

P[Ant,f = x] =
∑

E=(e1,...,en)∈execnt
absCovt(E,f)=x

(
n∏
i=1

P[Xt = ei]

)

P[Rnt,f = x] = P[Ant,f = x · totCov(f)]

Proof.

P[Ant,f = x]

{Def. of An}
= P[absCovt(Xn

t , f) = x]



7.2. Expected actual coverage 67

{Basic probability theory}∑
E∈execnt

absCovt(E,f)=x

P[Xn
t = E]

{Prop. 5.7}∑
E=(e1,...,en)∈execnt

absCovt(E,f)=x

(
n∏
i=1

P[Xt = ei]

)

The probability distribution function of Rnt,f follows directly from the definition
of relative actual coverage.

7.2 Expected actual coverage

The exact probability distribution functions derived in the previous section
could be useful for some purposes, but are often more detailed than we ac-
tually need. It is interesting to know some statistical properties such as their
expected value and variance. These provide quantities for an easy comparison
of two or more different test cases.

In this section formulae are derived for the expected value of the random
variables describing the absolute and relative actual coverage for both one and
a sequence of executions. We also show that the expected value of the actual
coverage of n executions of a test case is equal to its potential coverage if we
take the limit of n to infinity.

Applying the definition of expected value, we immediately obtain

E(At,f ) =
∑

σ∈exect

absCovt(σ, f) · P[Xt = σ] (7.1)

E(Rt,f ) =
E(At,f )

totCov(f)
(7.2)

E(Ant,f ) =
∑

E=(e1,...,en)∈execnt

absCovt(E, f) ·
n∏
i=1

P[Xt = ei] (7.3)

E(Rnt,f ) =
E(Ant,f )

totCov(f)
(7.4)

Complexity
The formula for E(Ant,f ) obtained this way is, unfortunately, very complex from
a computational point of view. The number of terms to be summed is equal to
the number of possible executions of the test case to the power of the number
of times the test case is executed, making it unusable, even for small test cases
with a small number of executions.

To be specific, we will express the complexity in terms of the basic operations
(addition, multiplication, comparison).

The number of summands is mn, with m = |exect|. Each summand requires
n multiplications, and the calculation of absCov. To calculate absCov, we range
over all erroneous traces (worst-case of order m). For each of them we calculate
the number of executions covering it (n trace comparisons, so a maximum of nd
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basic comparisons where d represents the maximal depth of the test case) and we
perform an exponentiation (worst-case log(n) multiplications). In conclusion,
the number of basic operations is in O(mn(n+m(nd+ log(n)))) = O(mn+1nd).

The following theorem gives a much more efficient formula.

Theorem 7.5. Let t be a test case for an LTS A and f a weighted fault model
consistent with A. Let n ∈ N be the number of times t is executed. Then

E(Ant,f ) =
∑

σa∈errt

f(σa) ·
(

(1− (1− pto
t (σa))n) · 1 +

n∑
k=0

(
n

k

)
pto
t (σ)k(1− pto

t (σ))n−k·

(1− pbr
t (a | σ))kpcov

t (σa, k)

)

Before proving this theorem formally, we will first intuitively explain it.
Basically, the formula calculates how much each erroneous trace contributes to
the expected actual coverage. To do so, two situations are distinguished.

First, consider the situation when a fault σa is observed during at least one
execution. In this case, the fault is complete covered. Clearly, the number of
occurrences of the trace σa during n executions is binomially distributed with
parameters n and p = pto(σa). It immediately follows that the probability of
complete coverage of σa is 1 − (1 − pto(σa))n. The contribution is therefore
f(σa) · (1− (1− pto(σa))n).

Second, consider the situation when a fault σa is not observed during any of
the n executions. It might still contribute to the expected actual coverage if σ
is observed. The number of times σ is observed during n executions is obviously
between 0 and n, and for each of these possibilities a different contribution to
the expected actual coverage is made. For k observations of σ this contribu-
tion is equal to the error weight f(σa) multiplied by the coverage probability
pcov(σa, k).

Since we do not know the number of times k a fault will be covered by
an execution in advance, we sum over all possible k. For each k, we multiply
the contribution by the probability of the occurrence of k covering executions.
That probability is equal to k successes in a binomial distribution B(n, pto(σ)).
Moreover, we need to exclude the scenario that during one of the k times σ is
observed the trace continues with the erroneous output a, since that scenario
was already covered. The probability of not observing σa when σ occurs k times
is easily seen to be equal to (1− pbr(a | σ))k.

The next proof mathematically shows the correctness of the derivation above.
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Proof. First observe that

∑
E=(e1,...,en)∈execnt

∃ei:σavei

pcov
t (σa, E)

n∏
i=1

P[Xt = ei]

{Def. of pcov, ∃ei : σa v ei}

=
∑

E=(e1,...,en)∈execnt
∃ei:σavei

n∏
i=1

P[Xt = ei]

{Complementary probability}

= 1−
∑

E=(e1,...,en)∈execnt
∀ei:σa6vei

n∏
i=1

P[Xt = ei]

{Def. 5.9, basic probability theory}
= 1− P[σav@ X

n
t ]

{Prop. 5.7}
= 1− (P[σa 6v Xt])n

{Basic rewriting}
= 1− (1− P[σa v Xt])n

{Def. of pto}
= 1−

(
1− pto

t (σa)
)n

Furthermore, observe that

∑
E=(e1,...,en)∈execnt

∀ei:σa6vei

pcov
t (σa, E)

n∏
i=1

P[Xt = ei]

{Partitioning based on the number of ei that cover σa}

=
n∑
k=0


∑

E=(e1,...,en)∈execnt
∀ei:σa6vei
|{i|σvei}|=k

pcov
t (σa, E)

n∏
i=1

P[Xt = ei]


{Corollary 6.5}

=
n∑
k=0

pcov
t (σa, k)


∑

E=(e1,...,en)∈execnt
∀ei:σa6vei
|{i|σvei}|=k

n∏
i=1

P[Xt = ei]
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{Independence of e1, . . . , en}

=
n∑
k=0

pcov
t (σa, k)


(
n

k

) ∑
E=(e1,...,en)∈execnt

∀ei:σa6vei
σve1,...,σvek
σ 6vek+1,...,σ 6ven

n∏
i=1

P[Xt = ei]


{Basic probability theory}

=
n∑
k=0

pcov
t (σa, k)

((
n

k

)
P[Xn

t = (e1, . . . , en) such that

∀ei : σa 6v ei ∧ σ v e1, . . . , σ v ek∧

σ 6v ek+1, . . . , σ 6v en]
)

{Prop. 5.7}

=
n∑
k=0

pcov
t (σa, k)

((
n

k

)
(P[σa 6v Xt ∧ σ v Xt])k·

(P[σa 6v Xt ∧ σ 6v Xt])n−k
)

{Basic rewriting}

=
n∑
k=0

pcov
t (σa, k)

((
n

k

)
(P[σ v Xt]− P[σa v Xt ∧ σ v Xt])k·

(P[σa 6v Xt ∧ σ 6v Xt])n−k
)

{Def. of conditional probabilities}

=
n∑
k=0

pcov
t (σa, k)

((
n

k

)
(P[σ v Xt]− P[σa v Xt | σ v Xt]·

P[σ v Xt])k · (P[σa 6v Xt ∧ σ 6v Xt])n−k
)

{Basic rewriting, σ 6v Xt implies σa 6v Xt}

=
n∑
k=0

pcov
t (σa, k)

((
n

k

)
(P[σ v Xt]− P[σa v Xt | σ v Xt]·

P[σ v Xt])k · (1− P[σ v Xt])
n−k

)
{Definition of pto and pbr}

=
n∑
k=0

pcov
t (σa, k)

((
n

k

)(
pto
t (σ)− pbr

t (a | σ)pto
t (σ)

)k (
1− pto

t (σ)
)n−k)

{Basic rewriting}

=
n∑
k=0

pcov
t (σa, k)

((
n

k

)
pto
t (σ)k(1− pbr

t (a | σ))k(1− pto
t (σ))n−k

)
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{Basic rewriting}

=
n∑
k=0

(
n

k

)
pto
t (σ)k(1− pto

t (σ))n−k(1− pbr
t (a | σ))kpcov

t (σa, k)

Now

E(Ant,f )

{Equation 7.3}

=
∑

E=(e1,...,en)∈execnt

absCovt(E, f) ·
n∏
i=1

P[Xt = ei]

{Def. of absCov, Def. of faultCov}

=
∑

E=(e1,...,en)∈execnt

( ∑
σa∈errt

f(σa) · pcov
t (σa, E)

)
·
n∏
i=1

P[Xt = ei]

{Basic rewriting}

=
∑

σa∈errt

f(σa)

 ∑
E=(e1,...,en)∈execnt

pcov
t (σa, E)

n∏
i=1

P[Xt = ei]


{Splitting the summation}

=
∑

σa∈errt

f(σa)

 ∑
E=(e1,...,en)∈execnt

∃ei:σavei

pcov
t (σa, E)

n∏
i=1

P[Xt = ei]+

∑
E=(e1,...,en)∈execnt

∀ei:σa6vei

pcov
t (σa, E)

n∏
i=1

P[Xt = ei]


{The equalities derived above}

=
∑

σa∈errt

f(σa) ·
(

(1− (1− pto
t (σa))n) · 1 +

n∑
k=0

(
n

k

)
pto
t (σ)k(1− pto

t (σ))n−k·

(1− pbr
t (a | σ))kpcov

t (σa, k)

)

Complexity
Observe that the number of summands is now equal to the number of possible
erroneous outputs (which is less than the number of executions) multiplied by
the number of times the test case is executed.

To be specific, the outer summation yields m = |errt| summands (which is
less than the number of executions). Each summand requires an exponentiation
to the power of n (complexity log(n)), and another summation. This inner sum-
mation yields n summands. Each of these summands needs four exponentiations
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(worst-case complexity 4 log(n)). Moreover, the binomial coefficients
(
n
0

)
. . .
(
n
n

)
have to be calculated, but this can be done in advance. Since each of these
needs at most 2n multiplications, the calculation of all necessary coefficients is
in O(n2).

In conclusion, the number of basic operations is in O(n2 + m(log(n) +
n(4 log(n)))) = O(n2 + mn log(n)). Clearly this is a major improvement in
comparison to the other formula for the expected value.

Example 7.6. To demonstrate calculating the expected value of the actual cov-
erage of both a single execution and a sequence of executions, Figure 5.3 is used
once more. As can be observed by the relation between the values for pbr and
pcbr, every error is assumed to be present with probability 0.05.

Since these and many of the calculations to come have been performed by
Matlab, not all intermediate results are shown.

E(At,f ) = absCovt(a? e! b? d!, f) · ptot (a? e! b? d!)

+ absCovt(a? e! b? e!, f) · ptot (a? e! b? e!)

+ absCovt(a? e! b? c!, f) · ptot (a? e! b? c!)

+ absCovt(a? d! b? e!, f) · ptot (a? d! b? e!)

+ absCovt(a? d! b? c!, f) · ptot (a? d! b? c!)

+ absCovt(a? d! b? d!, f) · ptot (a? d! b? d!)

+ absCovt(a? c!, f) · ptot (a? c!)

= (7 · 0.2 + 4 · 1 + 6 · 0.8) · 0.2475 · 0.025

+ (7 · 0.2 + 4 · 0.5 + 6 · 0.8) · 0.2475 · 0.935

+ (7 · 0.2 + 4 · 0.5 + 6 · 1) · 0.2475 · 0.04

+ (7 · 0.2 + 9 · 1 + 2 · 0.7) · 0.7425 · 0.03

+ (7 · 0.2 + 9 · 0.6 + 2 · 0.7) · 0.7425 · 0.935

+ (7 · 0.2 + 9 · 0.6 + 2 · 1) · 0.7425 · 0.035

+ (7 · 1) · 0.01

= 8.3080

E(A5
t,f ) = 7 ·

(
(1− (1− 0.01)5) · 1

+

5∑
i=0

((5

i

)
1i · 05−i · (1− 0.01)i · (1− (1− 0.2)i)

))

+ 4 ·
(

(1− (1− 0.2475 · 0.025)5) · 1

+

5∑
i=0

((5

i

)
0.2475i · (1− 0.2475)5−i · (1− 0.025)i · (1− (1− 0.5)i)

))
+

...

+ 2 ·
(

(1− (1− 0.7425 · 0.035)5) · 1

+
5∑
i=0

((5

i

)
0.7425i · (1− 0.7424)5−i · (1− 0.035)i · (1− (1− 0.7)i)

))
= 21.34

This example shows the effect of multiple executions of the same test case.
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Compared to the potential coverage defined in Chapter 2, we obtained much
more information about the test case executions.

However, since potential coverage describes the coverage of a test case in
terms of all the faults it can potentially cover, this should coincide with our
measure for an infinite number of executions. The next theorem shows that this
is indeed the case, assuming all potential faults are reachable.

Theorem 7.7. Let t be a test case for an LTS A and f a weighted fault model
consistent with A. Let n ∈ N be the number of times t is executed. If for all
erroneous traces σa! it holds that pto

t (σa!) > 0, then

lim
n→∞

E(Ant,f ) = absPotCov(t, f)

Proof.

Let gt,f,n =
(

(1− (1− pto
t (σa))n) · 1 +

n∑
k=0

(
n

k

)
pto
t (σ)k(1− pto

t (σ))n−k·

(1− pbr
t (a | σ))kpcov

t (σa, k)

)
then

lim
n→∞

E(Ant,f )

{Theorem 7.5, Def. of g}

= lim
n→∞

∑
σa∈errt

(f(σa) · gt,f,n)

{Summation independent of limit}

=
∑

σa∈errt

(
f(σa) · lim

n→∞
gt,f,n

)
{Derivation below}

=
∑

σa∈errt

f(σa)

{Def. of absPotCov, f(σa) = 0 if σa 6∈ errt}
= absPotCov(t, f)

since

lim
n→∞

gt,f,n

{Def. of g}

= lim
n→∞

(
(1− (1− pto

t (σa))n) · 1 +

n∑
k=0

(
n

k

)
pto
t (σ)k(1− pto

t (σ))n−k·

(1− pbr
t (σ)(a))kpcov

t (σa, k)

)
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{Limit of sum is sum of limits}
= lim
n→∞

(
1− (1− pto

t (σa))n
)

+ lim
n→∞

n∑
k=0

(
n

k

)
pto
t (σ)k(1− pto

t (σ))n−k·

(1− pbr
t (σ)(a))kpcov

t (σa, k)
{Def. of pcov}
= lim
n→∞

(
1− (1− pto

t (σa))n
)

+ lim
n→∞

n∑
k=0

(
n

k

)
pto
t (σ)k(1− pto

t (σ))n−k·

(1− pbr
t (σ)(a))k(1− (1− pcbr(a | σ))k)

{pto
t (σa) > 0 (assumption)}

= 1 + lim
n→∞

n∑
k=0

(
n

k

)
pto
t (σ)k(1− pto

t (σ))n−k·

(1− pbr
t (a | σ))k(1− (1− pcbr(a | σ))k)

{Lem. B.2 (p = pto
t (σ), q = 1− pcbr(a | σ) and r = 1− pbr(a | σ))}

= 1 + 0 = 1

Note that Lemma B.2 can be found on page 115.

7.3 Variance of actual coverage

Assume we have some test case for which each execution has a relative actual
coverage of fifty percent. Another test case has a relative actual coverage of
zero percent for half of the executions, and of one hundred percent for the other
half. These test cases have the same expected value of relative actual coverage,
but are clearly not identical. Therefore, some way of describing the variance of
the coverage is important.

Since each execution has its own probability and relative coverage percent-
age, it does not seem to be possible to describe the behaviour by any familiar
statistical distribution. However, we can calculate the variance using its defini-
tion in a direct way.

Given a real-valued random variable X with valuations x1 . . . xn, each oc-
curring with a probability P[X = xi], the variance Var(X) is defined by

Var(X) =
∑
x∈SX

((x− E(X))2 · P[X = x])

This, combined with the familiar law Var(aX) = a2X (for every constant a),
immediately leads to the following equations.

Var(At,f ) =
∑

σ∈exect

(absCovt(σ, f)− E(At,f ))2 · P[Xt = σ] (7.5)

Var(Ant,f ) =
∑

E∈execnt

(
absCovt(E, f)− E(Ant,f )

)2 · P[Xn
t = E] (7.6)
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Var(Rt,f ) =
Var(At,f )
totcov(f)2

(7.7)

Var(Rnt,f ) =
Var(Ant,f )
totcov(f)2

(7.8)

Unfortunately, the nonlinearity of variance does not seem to allow a more
efficient calculation.

Example 7.8. To illustrate the concept just described, observe the test cases t1
and t2 shown in Figure 7.1 and Figure 7.2. Using Theorem 7.5, we see that t1
has an expected absolute coverage of 5.3568, while t2 has an expected absolute
coverage of 10.7136. Since the total coverage for the second test case is twice
as high, both have an equal relative actual coverage (assuming no other faults
can be present). However, the test cases are obviously very different, since t1
has the same actual coverage for all likely executions, while t2 has much more
variation.

To see how different they are, the variance of the relative actual coverage of
a single execution is calculated using the formulae above. In order to use these,
we need to know all the elements σ of exect, their absolute actual coverage and
the probability of their occurrence. Table 7.1 shows precisely this information.

Now, the variances are calculated as follows.

Var(At1,f ) = (5− 5.3568)2 · 0.060025 + · · ·+
(15− 5.3568)2 · 0.02 = 3.127

Var(Rt1,f ) =
3.127
552

= 0.001

Var(At2,f ) = (14− 10.7136)2 · 0.060025 + · · ·+
(30− 10.7136)2 · 0.02 = 35.715

Var(Rt2,f ) =
35.715
1102

= 0.003

The variance of the second test case is indeed larger than the variance of the
first, giving a formal indication of the wider distribution of its actual coverage.

7.4 An approximation for coverage prediction

The formula derived in this chapter for the expected actual coverage of n ex-
ecutions of a test case is based on several probabilities. Since for every fault
σa it included pto(σa) and pbr(a | σ), we need to estimate the probability that
a certain fault occurs. As discussed in Chapter 5, this involves estimating the
probability that a fault is present.

As the most difficult part of obtaining pbr and pcbr seems to be the estimation
of the presence probabilities, we propose an approximation that does not need
this estimation. Instead, we assume that all presence probabilities are close to
0, by taking the limit. Assuming that the fault presence probabilities are indeed
small in reality, this gives a good approximation.

First, we discuss several observations concerning systems with small presence
probabilities.
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fail

failpass pass failpass passfailpass pass failpass pass

15

(0.2)

10

(0.2)

10

(0.2)

10

(0.2)

10

(0.2)

(c! (0.02)

(c! (0.02) (c! (0.02)(c! (0.02) (c! (0.02)

(b! (0.5) (b! (0.5)

(0.49) a! b! (0.49)

(0.25) a!

(0.25) c!

(0.25) c!

(0.25) a!

(0.49) a!
b! (0.49)

(0.49) a! b! (0.49) (0.49) a! b! (0.49)
(0.49) a!

b! (0.49)

Figure 7.1: A test case t1 with probabilities and error weights
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Figure 7.2: A test case t2 with probabilities and error weights

(a) Test case t1

σ ptot1 (σ) absCovt1
a! a! a! 0.060025 5
a! a! b! 0.060025 5
a! a! c! 0.002450 13
a! b! a! 0.120050 5
a! b! b! 0.120050 5
a! b! c! 0.004900 13
a! c! a! 0.060025 5
a! c! b! 0.060025 5
a! c! c! 0.002450 13
b! a! a! 0.060025 5
b! a! b! 0.060025 5
b! a! c! 0.002450 13
b! b! a! 0.120050 5
b! b! b! 0.120050 5
b! b! c! 0.004900 13
b! c! a! 0.060025 5
b! c! b! 0.060025 5
b! c! c! 0.002450 13

c! 0.020000 15

(b) Test case t2

σ ptot2 (σ) absCovt2
a! a! a! 0.060025 14
a! a! b! 0.060025 14
a! a! c! 0.002450 46
a! b! a! 0.073500 6
a! b! b! 0.122500 6
a! b! c! 0.049000 6
a! c! a! 0.060025 14
a! c! b! 0.060025 14
a! c! c! 0.002450 46
b! a! a! 0.061250 6
b! a! b! 0.049000 6
b! a! c! 0.012250 6
b! b! a! 0.120050 14
b! b! b! 0.120050 14
b! b! c! 0.004900 46
b! c! a! 0.061250 6
b! c! b! 0.049000 6
b! c! c! 0.012250 6

c! 0.020000 30

Table 7.1: Executions with their probability and absolute actual coverage
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Lemma 7.9. Let σa be an erroneous trace, then

lim
ppr(σa)→0

pbr(a | σ) = 0

Proof. Let σa be an erroneous trace, then

lim
ppr(σa)→0

pbr(a | σ) = lim
ppr(σa)→0

pcbr(a | σ) · ppr(σa) {Prop. 5.36}

= 0 {Basic calculus}

Lemma 7.10. Let σa be an erroneous trace, then

lim
ppr(σa)→0

pto(σa) = 0

Proof. Let σan be an erroneous trace, with σ = a0 . . . an−1. Then

lim
ppr(σan)→0

pto(σan)

= lim
ppr(σan)→0

n∏
i=0

pbr(ai | a0 . . . ai−1)· {Prop. 5.15}

= lim
ppr(σan)→0

n−1∏
i=0

pbr(ai | a0 . . . ai−1) · pbr(an | σ) {Basic rewriting}

= lim
ppr(σan)→0

n−1∏
i=0

pbr(ai | a0 . . . ai−1) · pcbr(an | σ) · ppr(σan) {Prop. 5.36}

= 0 {Basic calculus}

Lemma 7.11. Let σan be an erroneous trace, with σ = a0 . . . an−1. Then

lim
∀σa∈errt:
ppr(σa)→0

pto(σ) =
n∏
i=0

pfbr(ai | a0 . . . ai−1)

Proof. Let σan be an erroneous trace, with σ = a0 . . . an−1. Then

lim
∀σa∈errt:
ppr(σa)→0

pto(σan)

{Prop. 5.15}

= lim
∀σa∈errt:
ppr(σa)→0

n∏
i=0

pbr(ai | a0 . . . ai−1)

{Prop. 5.36}

= lim
∀σa∈errt:
ppr(σa)→0

n∏
i=0

pfbr(ai | a0 . . . ai−1) ·

1−
∑

b!∈LO
σb!6∈tracesA

pbr(b! | a0 . . . ai−1)


{Lemma 7.9}

= lim
ppr(σan)→0

n∏
i=0

pfbr(ai | a0 . . . ai−1)
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We will use the shorthand pfto(σ) (in which fto is short for flawless trace
occurrence) to denote lim

∀σa∈errt:
ppr(σa)→0

pto(σ).

Using these lemmas and Theorem 7.5, we directly obtain the following the-
orem.

Theorem 7.12. Let t be a test case for an LTS A and f a weighted fault model
consistent with A. Let n ∈ N be the number of times t is executed. Then

lim
∀σa∈errt:
ppr(σa)→0

E(Ant,f ) =
∑

σa∈errt

f(σa) ·
n∑
k=0

(
n

k

)
pftot (σ)k(1− pftot (σ))n−kpcov

t (σa, k)

Note that we now only need the flawless branching probabilities and the
conditional branching probabilities. Therefore, we removed the need to estimate
presence probabilities.

The next example shows the difference between using the original formula
and the approximation for a small test case.

Example 7.13. Observe the test case in Figure 7.3. The presence probability of
each erroneous trace has been estimated at 0.02, and all conditional branching
probabilities have been estimated at 0.5. We will calculate the expected actual
coverage for 5 executions using both the approximation and the original formula.
We used a probability of 0.75 for starting with an a! and a probability of 0.25
for starting with a b! when calculating the flawless trace occurrences.

E(A5
t,f ) = 32.2340

lim
∀σa∈errt:
ppr(σa)→0

E(A5
t,f ) = 32.2425

This makes it very clear that even with presence probabilities as high as two per-
cent, using the approximation only yields a very slight deviation. Interestingly,
this deviation is much smaller than the presence probabilities we neglected.
Changing the presence probabilities from 2 percent to 0 percent changed the
expected actual coverage by not more than 0.03 percent.
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Figure 7.3: A test case t with probabilities and error weights
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This was expected, since omitting the term (1 − (1 − pto
t (σa))n) causes a

slight decrease in coverage, whereas omitting (1− pbr
t (a | σ))k and replacing pto

by pfto causes a slight increase. Apparently, in this case they quite nicely cancel
each other out. It would be interesting and useful for a future research project
to investigate more thoroughly whether this holds in general.





Chapter 8
Actual coverage of test suites

All definitions and propositions in the previous chapters have been given for just
one test case t. However, in practice one often applies a test suite; a tuple of test
cases. This chapter generalises our most important definitions and propositions
to test suites.

We will first look at the probabilities associated with the execution of a test
suite, by generalising trace occurrence probabilities and branching probabilities.

Then, the evaluation of actual coverage for test suites is discussed. Coverage
probabilities are generalised as well, and this notion is used to generalise fault
coverage and actual coverage.

Finally, the prediction of actual coverage is generalised. We show that the
expected actual coverage can still be calculated efficiently.

Organisation of this chapter
First, Section 8.1 discusses all relevant probabilities. Then, the evaluation of
actual coverage for test suites is covered in Section 8.2. We conclude with the
prediction of actual coverage in Section 8.3.

8.1 Probabilities in test suite executions

Our framework expects that a probabilistic execution model is specified for every
test case. Therefore, one could specify a test suite in which the conditional
branching probability of a certain fault is not the same in different test cases.
Since these probabilities are dependent on the implementation and not on the
test case, this would obviously not make any sense.

To resolve this issue, we define consistency of test suites and assume all test
suites are consistent. A test suite is consistent if all its test cases are consistent
with one single probabilistic fault automaton conform Definition 5.27.

Definition 8.1. Let T = (t1, . . . , tn) be a test suite. T is consistent if there
exists a probabilistic fault automaton P such that every ti is consistent with P.

Using consistency, trace occurrence probabilities for test suites can be in-
troduced. The trace occurrence probability of a trace is defined as its trace
occurrence probability in the test cases in which it is contained.

81
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Definition 8.2. Let T = (t1, . . . , tk) be a consistent test suite for an LTS A.
Then, the trace occurrence function of T is the function pto

T :
⋃
ti → [0..1] given

for every σ ∈
⋃
ti by

pto
T (σ) =

{
pto
ti (σ) , if there exists a ti ∈ T such that σ ∈ ti

0 , otherwise

Note that pto
T is not a probability distribution, for the same reason pto

t was
not.

For Definition 8.2 to be uniquely defined, it should hold that pto
ti (σ) = pto

tj (σ)
if σ ∈ ti ∩ tj . This is proved by the next lemma.

Lemma 8.3. Let T = (t1, . . . , tk) be consistent test suite for an LTS A, and
σ ∈ L∗A. Then, if σ ∈ ti ∩ tj, it follows that pto

ti (σ) = pto
tj (σ).

Proof. Let σ = a1a2 . . . an ∈ ti ∩ tj . Then, for all 0 ≤ m ≤ n − 1 we have
pbr
ti (am+1 | a1 . . . am) = pbr

tj (am+1 | a1 . . . am) by Definition 5.27 and the as-
sumption that T is consistent. Using Proposition 5.15 we immediately obtain
that pto

ti (σ) = pto
tj (σ).

Since pbr is based on pto, it is easy to see that we can generalise this function
to test suites in the same way.

Definition 8.4. Let T = (t1, . . . , tk) be a consistent test suite for an LTS A.
Then, the branching probability function of T is the function pbr

T : L∗A ×LA →
[0..1] given for every σ ∈ L∗A, a ∈ L by

pbr
T (σ, a) =

{
pbr
ti (a | σ) , if there exists a ti ∈ T such that σa ∈ ti

0 , otherwise

As usual, pbr
T (σ, a) is denoted by pbr

T (a | σ). Note that although pbr(σ) was a
distribution function for test cases, it is not for test suites.

8.2 Evaluating actual coverage for test suites

To generalise the definitions of fault coverage and actual coverage to test suites,
we first define coverage probabilities for test suites. Since a single execution can
be seen as a sequence of executions of length 1, we will not explicitly define our
notions for a single execution anymore.

Similar to the definition of coverage probabilities for test cases, the definition
for test suites is based on the number of executions c that reached the state from
which a fault could occur. For test suites, however, not every execution that
starts with σ reaches a state from which a fault σa can occur.

To understand the difficulties, assume we have a test suite consisting of some
test cases ti . . . tk that observe after some trace σ, and some others that perform
an input action after σ. Then, only the executions ei for which σ v ei of t1 . . . tk
influence our confidence in the absent (or presence) of a fault σa!, not those of
the other test cases. After all, these always perform an input action, whether
σa! is present or not.

This observation leads to the following definition.
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Definition 8.5. Let T = (t1, . . . , tk) be a consistent test suite and σa! ∈ errtl
for some l. Let E = (et11 , e

t1
2 , . . . , e

t1
n , e

t2
1 , e

t2
2 , . . . , e

t2
n , . . . , e

tk
1 , e

tk
2 , . . . , e

tk
n ) be an

k · n-tuple of executions of T , such that etij is the jth execution of test case ti.
Then, the coverage probability pcov

T of σa! after E is defined by

pcov
T (σa!, E)

=

 1 , if σa!v∃E
0 , if σv@ E
P[σa!v∃Xc

tl
| σv∀Xc

tl
∧ SoPT (σa!) = present] , otherwise

with c = |{(i, j) | σ v etij ∧ σa! ∈ ti}|.

Recall that Xc
tl

is the random variable of the execution of a test case tl
(chosen such that σa! ∈ tl) for c times. Because of Lemma 8.3, it does not
matter which one we choose. Also note that this definition can easily be seen
to degenerate to the definition of pcov for test cases, in case a test suite only
contains one test case.

The next corollary relates the coverage probability of a fault after a sequence
of test suite executions to the function pcov

t of Definition 6.4. Combined with
Proposition 6.6 it provides an easy way to calculate pcov

T .

Corollary 8.6. Let T = (t1, . . . , tk) be a consistent test suite and σa! ∈ errtl
for some l. Let E = (et11 , e

t1
2 , . . . , e

t1
n , e

t2
1 , e

t2
2 , . . . , e

t2
n , . . . , e

tk
1 , e

tk
2 , . . . , e

tk
n ) be any

k·n-tuple of executions of T , such that etij is the jth execution of test case ti, with
c = |{(i, j) | σ v etij ∧ σa! ∈ ti}| and σa!v@ E. Then, the coverage probability
pcov
T of σa! after E is given by

pcov
tl

(σa!, c)

Proof. Immediate from Definition 8.5 and Definition 6.4.

We now define a shorthand, that will be useful in the next section.

Definition 8.7. Let T = (t1, . . . , tk) be a consistent test suite for an LTS A,
σ ∈ L∗A and a ∈ L, such that σa 6∈ tracesA. Let c be any natural number. Then
we define

pcov
T (σa!, c) =

{
pcov
ti (σa!, c) , if there exists a ti ∈ T such that σa! ∈ ti

0 , otherwise

Using pcov
T we can now easily define the fault coverage and actual coverage

for test suites. These are both very similar to the corresponding notions for
test cases, and will therefore just be proposed without much explanation. For
motivational details, we refer to Chapter 6.

Definition 8.8. Let A be an LTS, T = (t1, . . . , tk) a consistent test suite for A,
and f a weighted fault model consistent with A. Let E be a tuple of executions
of T and σa! ∈

⋃
errti . Then, the fault coverage of σa! by E, denoted by

faultCovT (σa!, E, f), is defined by

faultCovT (σa!, E, f) = f(σa!) · pcov
T (σa!, E)
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Definition 8.9. Let A be an LTS, T = (t1, . . . , tk) a consistent test suite for A,
and f a weighted fault model consistent with A. Let E be a tuple of executions of
T . Then, the absolute actual coverage of E, denoted absCovT (E, f), is defined
by

absCovT (E, f) =
∑

σa!∈
⋃

errti

faultCovT (σa!, E, f)

The relative actual coverage of E, denoting the fraction of the total error
weight that is actually covered, is written relCovT (E, f). This is defined by

relCovT (E, f) =
absCovT (E, f)

totCov(f)

Example 8.10. As an example of the definitions proposed thus far, consider the
test suite depicted in Figure 8.1. It consists of five test cases, two of which are
equal. It is not difficult to see that the test suite is consistent. We will refer to
the test cases by t1 . . . t5, from left to right and from top to bottom.

fail pass

pass fail pass
5

(0.2)

10

(0.25)

(a? (1.0)

(0.1) c!
(d! (0.3)

e! (0.6)

(0.1) c!
(d! (0.3)

e! (0.6)
fail pass

pass fail pass
5

(0.2)

10

(0.25)

(a? (1.0)

(0.1) c!
(d! (0.3)

e! (0.6)

(0.1) c!
(d! (0.3)

e! (0.6)

pass fail pass

7

(0.15)

(b? (1.0)

(0.75) c!
(d! (0.05)

e! (0.2)

pass fail pass

5.5

(0.15)

(b? (1.0)

(b? (1.0)

(0.65) c!
(d! (0.1)

e! (0.25)

pass pass fail

4

(0.25)

(0.5) c!
(d! (0.48)

e! (0.02)

Figure 8.1: A test suite T consisting of five test cases
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We first calculate some probabilities associated with the test suite.

pto
T (a? c!) = pto

t1 (a? c!) = pto
t2 (a? c!) = 1.0 · 0.1 = 0.1

pbr
T (c! | b? b?) = pbr

t4 (c! | b? b?) = 0.65

Suppose the test suite has been executed three times, resulting in the following
fifteen test case executions.

E = (a? c!, a? d!, a? e? c!,
a? d!, a? d!, a? e? e!,
b? c!, b? c!, b? e?,
b? b? c!, b? b? c!, b? b? e!
c!, c!, e!)

We can now calculate the coverage probability of each fault in the test suite,
using Corollary 8.6 and Proposition 6.6.

pcov
T (a? c!, E) = 1

pcov
T (a? e! d!, E) = pcov

t1 (a? e! d!, 2) = 1−
(
1− pcbr

t1 (d! | a? e!)
)2

= 0.4375

pcov
T (b? d!, E) = pcov

t3 (b? d!, 3) = 1−
(
1− pcbr

t3 (d! | b?)
)3

= 0.386

pcov
T (b? b? d!, E) = pcov

t4 (b? b? d!, 3) = 1−
(
1− pcbr

t4 (d! | b? b?)
)3

= 0.386
pcov
T (e!, E) = 1

Notice that in the third calculation we use pcov
t3 (b? d!, 3), even though there are

6 executions ei such that b? v ei. However, only three of these resulted from a
test case that observed after the b?.

Calculating the actual coverage of E has now become easy.

absCovT (E, f) =
∑

σa!∈
⋃

errti

faultCovT (σa!, E, f)

=
∑

σa!∈
⋃

errti

f(σa!) · pcov
T (σa!, E)

= 5 · 1 + 10 · 0.4375 + 7 · 0.386 + 5.5 · 0.386 + 4 · 1 = 18.2

8.3 Predicting actual coverage of test suites

The random variables for the actual coverage of test cases are generalised very
easily as well.

Definition 8.11. Let T = (t1, . . . , tk) be a consistent test suite for an LTS A
and f a weighted fault model consistent with A. Let n ∈ N be the number of
times T is executed. Then we define

AnT,f = absCovT ((Xn
t1 , X

n
t2 , . . . , X

n
tk

), f)

RnT,f = relCovT ((Xn
t1 , X

n
t2 , . . . , X

n
tk

), f)

where (Xn
t1 , X

n
t2 , . . . , X

n
tk

) denotes the k ·n-tuple (et11 , e
t1
2 , . . . , e

t1
n , e

t2
1 , e

t2
2 , . . . , e

t2
n ,

. . . , etk1 , e
tk
2 , . . . , e

tk
n ) such that (eti1 , e

ti
2 , . . . , e

ti
n ) = Xn

ti for all 1 ≤ i ≤ k.
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Similar to the situation where we handled just test cases, we can also derive
an efficient formula for the expected absolute actual coverage of a test suite.
The following function will assist in this formula. It provides a shorthand for
the number of test cases of a test suite that contain a certain trace.

Definition 8.12. Let T be a test suite for an LTS A = 〈S, s0, L,∆〉 and σ ∈ L∗,
then the function cT : L∗ → [0..1] denotes the number of test cases of T that
contain σ. For all σ ∈ L∗

cT (σ) = |{t ∈ T | σ ∈ t}|

The following theorem uses this function to state the expected value of the
actual coverage of a test suite.

Theorem 8.13. Let T = (t1, . . . , tk) be a test suite for an LTS A and f a
weighted fault model consistent with A. Let n ∈ N be the number of times T is
executed. Then

E(AnT,f ) =
∑

σa∈
⋃

errti

f(σa) ·
(

(1− (1− pto
T (σa))cT (σa)n) · 1 +

cT (σa)n∑
k=0

(
cT (σa)n

k

)
pto
T (σ)k(1− pto

T (σ))cT (σa)n−k·

(1− pbr
T (a | σ))kpcov

T (σa, k)

)
Proof. Note that for test suites containing just one test case we have cT (σa) = 1.
As expected, the formula that way immediately degenerates to the formula for
the expected actual coverage of test cases. Therefore, the proof is also quite
similar to the proof of Theorem 7.5.

First observe that∑
E=(e

t1
1 ,...,e

tk
n )∈execnt1×···×execntk
σav∃ E

pcov
T (σa, E) ·

n∏
i=1

P[Xn
ti = (eti1 , . . . , e

ti
n )]

{Def. of pcov, σav∃E}

=
∑

E=(e
t1
1 ,...,e

tk
n )∈execnt1×···×execntk
σav∃ E

n∏
i=1

P[Xn
ti = (eti1 , . . . , e

ti
n )]

{Complementary probability}

= 1−
∑

E=(e
t1
1 ,...,e

tk
n )∈execnt1×···×execntk
σav@ E

n∏
i=1

P[Xn
ti = (eti1 , . . . , e

ti
n )]

{Basic probability theory}
= 1− P[σav@ X

n
t1 ∧ · · · ∧ σav@ X

n
tk

]
{Independence of Xn

k }

= 1−
k∏
i=1

P[σav@ X
n
ti ]
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{Prop. 5.7}

= 1−
k∏
i=1

(P[σav@ Xti ])
n

{Splitting the product}

= 1−
∏
ti∈T
σa∈ti

(P[σa 6v Xti ])
n ·

∏
ti∈T
σa6∈ti

(P[σa 6v Xti ])
n

{Def. of pto}

= 1−
∏
ti∈T
σa∈ti

(
1− pto

ti (σa)
)n · ∏

ti∈T
σa6∈ti

(
1− pto

ti (σa)
)n

{σa 6∈ ti implies pto
ti (σa) = 0}

= 1−
∏
ti∈T
σa∈ti

(
1− pto

ti (σa)
)n

{Def. 8.2}

= 1−
∏
ti∈T
σa∈ti

(
1− pto

T (σa)
)n

{Def. 8.12}

= 1−
(
1− pto

T (σa)
)cT (σa)n

Furthermore, observe the following equalities. In this proof, we assume without
loss of generality that the cT (σa) test cases covering σa are t1, . . . , tcT (σa). For
brevity, cT (σa) will be abbreviated as c. Moreover, we assume that cT (σa) > 0.

∑
E=(e

t1
1 ,...,e

tk
n )∈execnt1×···×execntk
σav@ E

pcov
T (σa, E) ·

n∏
i=1

P[Xn
ti = (eti1 , . . . , e

ti
n )]

{The test cases tc+1 . . . tk can be dropped, because (1) σav@ E does not
restrict them by definition of cT and the ordering assumption, and
(2) they do not change pcov

T (σa,E) by definition of pcov
T .

The assumption that c > 0 is used as well.}

=
∑

E=(e
t1
1 ,...,etcn )∈execnt1×···×execntc

σav@ E

pcov
T (σa, E) ·

c∏
i=1

P[Xn
ti = (eti1 , . . . , e

ti
n )]

{Independence and equivalence of Xn
ti (Lemma 8.3)}

=
∑

E=(e1,...,ecn)∈execcnt1
σav@ E

pcov
T (σa, E) · P[Xcn

t1 = (e1, . . . , ecn)]
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{Partitioning based on the number of ei that cover σa}

=
cn∑
k=0


∑

E=(e1,...,ecn)∈execcnt1
σav@ E

|{i|σvei}|=k

pcov
T (σa, E) · P[Xcn

t1 = (e1, . . . , ecn)]


{Cor. 8.6, Def. 8.7}

=
cn∑
k=0

pcov
T (σa, k)


∑

E=(e1,...,ecn)∈execcnt1
σav@ E

|{i|σvei}|=k

P[Xcn
t1 = (e1, . . . , ecn)]


{Independence of e1, . . . , ecn}

=
cn∑
k=0

pcov
T (σa, k)


(
cn

k

) ∑
E=(e1,...,ecn)∈execcnt1

σav@ E
σve1,...,σvek

σ 6vek+1,...,σ 6vecn

P[Xcn
t1 = (e1, . . . , ecn)]


{Basic probability theory}

=
cn∑
k=0

pcov
T (σa, k)

((
cn

k

)
P[Xcn

t1 = (e1, . . . , ecn) such that

∀ei : σa 6v ei ∧ σ v e1, . . . , σ v ek∧

σ 6v ek+1, . . . , σ 6v ecn]
)

{Prop. 5.7}

=
cn∑
k=0

pcov
T (σa, k)

((
cn

k

)
(P[σa 6v Xt1 ∧ σ v Xt1 ])k·

(P[σa 6v Xt1 ∧ σ 6v Xt1 ])cn−k
)

{Basic rewriting}

=
cn∑
k=0

pcov
T (σa, k)

((
cn

k

)
(P[σ v Xt1 ]− P[σa v Xt1 ∧ σ v Xt1 ])k·

(P[σa 6v Xt1 ∧ σ 6v Xt1 ])cn−k
)

{Def. of conditional probabilities}

=
cn∑
k=0

pcov
T (σa, k)

((
cn

k

)
(P[σ v Xt1 ]− P[σa v Xt1 | σ v Xt1 ]·

P[σ v Xt1 ])k · (P[σa 6v Xt1 ∧ σ 6v Xt1 ])cn−k
)
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{Basic rewriting, σ 6v Xt1 implies σa 6v Xt1}

=
cn∑
k=0

pcov
T (σa, k)

((
cn

k

)
(P[σ v Xt1 ]− P[σa v Xt1 | σ v Xt1 ]·

P[σ v Xt1 ])k · (1− P[σ v Xt1 ])cn−k
)

{Definition of pto and pbr}

=
cn∑
k=0

pcov
T (σa, k)

((
cn

k

)(
pto
t1 (σ)− pbr

t1 (a | σ)pto
t1 (σ)

)k (
1− pto

t1 (σ)
)cn−k)

{Basic rewriting}

=
cn∑
k=0

pcov
T (σa, k)

((
cn

k

)
pto
t1 (σ)k(1− pbr

t1 (a | σ))k(1− pto
t1 (σ))cn−k

)
{Basic rewriting}

=
cn∑
k=0

(
cn

k

)
pto
t1 (σ)k(1− pto

t1 (σ))cn−k(1− pbr
t1 (a | σ))kpcov

T (σa, k)

{Def. 8.2, Def. 8.4}

=
cn∑
k=0

(
cn

k

)
pto
T (σ)k(1− pto

T (σ))cn−k(1− pbr
T (a | σ))kpcov

T (σa, k)

Now

E(AnT,f )
{Def. 8.11}
= E(absCovT ((Xn

t1 , X
n
t2 , . . . , X

n
tk

), f))
{Def. of E, independence of Xn

ti}∑
E=(e

t1
1 ,...,e

tk
n )∈execnt1×···×execntk

absCovT (E, f) ·
n∏
i=1

P[Xn
ti = (eti1 , . . . , e

ti
n )]

{Def. of absCov, Def. of faultCov}
∑

E=(e
t1
1 ,...,e

tk
n )∈execnt1×···×execntk

 ∑
σa∈

⋃
errti

f(σa) · pcovT (σa, E)

 · n∏
i=1

P[Xn
ti

= (e
ti
1 , . . . , e

ti
n )]

{Basic rewriting}

∑
σa∈

⋃
errti

f(σa)

 ∑
E=(e

t1
1 ,...,e

tk
n )∈execnt1×···×execntk

pcovT (σa, E) ·
n∏
i=1

P[Xn
ti

= (e
ti
1 , . . . , e

ti
n )]
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{Splitting the summation}

∑
σa∈

⋃
errti

f(σa)


∑

E=(e
t1
1 ,...,e

tk
n )∈execnt1×···×execntk
σav∃ E

pcovT (σa, E) ·
n∏
i=1

P[Xn
ti

= (e
ti
1 , . . . , e

ti
n )]+

∑
E=(E1,...,Ek)∈execnt1×···×execntk

σav@ E

pcovT (σa, E) ·
n∏
i=1

P[Xn
ti

= (e
ti
1 , . . . , e

ti
n )]


{The equalities derived above}

=
∑

σa∈
⋃

errti

f(σa) ·
(

(1− (1− pto
T (σa))cT (σa)n) · 1 +

cT (σa)n∑
k=0

(
cT (σa)n

k

)
pto
T (σ)k(1− pto

T (σ))cT (σa)n−k·

(1− pbr
T (a | σ))kpcov

T (σa, k)

)

Note that the earlier assumption cT (σa) > 0 indeed holds, since we only sum
over traces σa that are in at least one test case.

It is not difficult to see that the complexity is comparable to the complexity
of the formula for a single test case. In this case it is in O((sn)2 +msn log(sn)),
with s = |T | and m = |

⋃
ti

errti |.

Example 8.14. To demonstrate the applicability of Theorem 8.13, we calculate
the expected actual coverage of three executions of the test suite T of Figure 8.1.
Using Theorem 8.13, we obtain

E(A3
T,f ) =

∑
σa∈

⋃
errti

f(σa) ·
(

(1− (1− pto
T (σa))3cT (σa)) · 1 +

3cT (σa)∑
k=0

(
3cT (σa)

k

)
pto
T (σ)k(1− pto

T (σ))3cT (σa)−k·

(1− pbr
T (a | σ))kpcov

T (σa, k)

)

For layout purposes, we only show one term of this summation; the one corre-
sponding to the fault a? c!. Obviously, all others are very similar.



8.3. Predicting actual coverage of test suites 91

f(a? c!) ·
(

(1− (1− pto
T (a? c!))3cT (a? c!)) +

3cT (a? c!)∑
k=0

(
3cT (a? c!)

k

)
pto
T (a?)k(1− pto

T (a?))3cT (a? c!)−k·

(1− pbr
T (c! | a?))kpcov

T (a? c!, k)

)

= 5 ·

(
1− 0.96 +

6∑
k=0

(
6
k

)
1k · 06−k · 0.9k · (1− 0.8k)

)
= 4.3034

Calculating the other terms similarly, we obtain

E(A3
T,f ) = 4.3034 + 8.6639 + 3.3143 + 3.0377 + 2.4117 = 21.731

The following theorem states that the absolute actual coverage of an infinite
number of test suite executions is equal to its absolute potential coverage.

Theorem 8.15. Let T = (t1, . . . , tk) be a test suite for an LTS A and f a
weighted fault model consistent with A. Let n ∈ N be the number of times T is
executed. If for all erroneous traces σa! it holds that pto

T (σa!) > 0, then

lim
n→∞

E(AnT,f ) = absPotCov(T, f)

Proof. Since cT (σa) is positive for each σa ∈
⋃

errti , we have

lim
n→∞

(
(1− (1− pto

T (σa))cT (σa)n) · 1 +

cT (σa)n∑
k=0

(
cT (σa)n

k

)
pto
T (σ)k(1− pto

T (σ))cT (σa)n−k·

(1− pbr
T (σ)(a))kpcov

T (σa, k)

)

= lim
n→∞

(
(1− (1− pto

T (σa))n) · 1 +

n∑
k=0

(
n

k

)
pto
T (σ)k(1− pto

T (σ))n−k·

(1− pbr
T (σ)(a))kpcov

T (σa, k)

)
Combining this observation with the proof of Theorem 7.7, we immediately

obtain

lim
n→∞

E(AnT,f ) =
∑

σa∈
⋃

errti

f(σa)

= absPotCov(T, f)





Chapter 9
A detailed example

To see the concepts of the previous chapters come to life, this chapter provides a
detailed example. It is meant to demonstrate how to work with all the concepts
developed in the previous chapters.

We start from a system specification, for which we provide error weights and
estimate presence probabilities and conditional branching probabilities.

We consider two implementations, providing us with the flawless branching
probabilities. A probabilistic execution model is derived using this information.

Then, two test cases and a test suite are derived, and their potential coverage
as well as their expected actual coverage is calculated. We demonstrate how to
calculate actual coverage for both a single execution and a sequence of execu-
tions. To get a feeling of the process of executing test cases and test suites, we
simulate several executions using Matlab, and calculate the actual coverage of
the resulting traces. Moreover, we perform many simulations to show how close
our prediction of the expected actual coverage approaches the results obtained
by (simulated) executions of implementations.

As the current example is still theoretical, an extensive future study applying
actual coverage to real software projects would be necessary to fully show the
usability, sensitivity and accuracy of our methods.

Organisation of this chapter
We first give a system specification and the corresponding probabilities in Sec-
tion 9.1. Then, two implementations and their PFA are discussed in Section 9.2.
Section 9.3 provides test cases and calculates their potential and expected actual
coverage. Finally, Section 9.4 demonstrates the evaluation of actual coverage
and simulates test case executions.

9.1 The specification of a simple system

Our example is aimed at a (fictional) chemical dispenser. It dispenses two
chemical substances, for notational ease denoted by x and y.

The chemical x is produced by mixing ammonium (a) with barium (b) and
adding some more ammonium afterwards. A prefabricated concentrated emul-
sion of ammonium and barium (e) might also be used, although it should directly

93
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s3260s511 s512

s3743 s774

s727

s3745 s776

s728

x? y?

e! a!

w! b!

c! a!

w! a!a! b!

δ

Figure 9.1: The system A

be thinned out by adding water (w).
The chemical y is produced by first mixing two quantities of ammonium,

and then adding some barium. A concentrated version of ammonium (c) might
also be used, although it should directly be thinned out by adding water as well.

The system is represented by the LTS A given in Figure 9.1. Formally, A =
〈S, s0, L,∆〉 with S = {s0, s1, s2, s3, s4, s5, s6, s7, s8} and L = {x?, y?, a!, b!, c!,
e!, w!}. ∆ contains among others the transitions (s0, x?, s1) and (s1, e!, s3).

We assume that the presence probability of each erroneous trace is 0.05. All
faults are assumed to have a conditional branching probability of 0.25.

Since the chemical compounds e and c are concentrated and as such danger-
ous, it is very important that they are thinned out by adding water immediately.
Therefore, from s3 and s5 all actions other than adding water have been given
a high severity. Based on this information, the outputs e and c from s0 are also
considered severe. Every other error is of a significantly lower severity.

The error weights r(si, a) for all states si ∈ S and actions a ∈ LO ∪ {δ} are
shown in Table 9.1. It also shows the accumulated error weights r̄ (according to
Definition 2.23). These accumulated error weights have been included in Fig-
ure 9.1 as superscripts of the state names. For simplicity, we ignore discounting
by assuming a finite depth weighted fault model f based on these error weights,
with k larger than the depth of the test cases.

r a! b! e! c! w! δ r̄
s0 10 8 150 150 8 0 326
s1 0 17 0 12 11 11 51
s2 0 19 12 0 9 11 51
s3 85 60 67 91 0 71 374
s4 15 0 12 18 11 21 77
s5 85 60 91 67 0 71 374
s6 0 13 17 15 11 21 77
s7 0 13 8 25 18 8 72
s8 17 0 14 21 13 7 72

Table 9.1: Error weights for A
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s0s1 s2

s3 s4

s7

s5 s6

s8

x? y?

(0.76) e! a! (0.19)

(0.9375) w! b! (0.9375)

(0.475) c! a! (0.475)

(0.9375) w! a! (0.9375)

a!
(0.9375)

b!
(0.9375)

(0.9375)
δ

Figure 9.2: A PFA of A

9.2 Implementations of the system

Given an implementation of A, the flawless branching probabilities can be es-
timated or might even be known. We consider implementations that choose e!
instead of a! b! with a probability of 0.8, because there is more of the concen-
trated ammonium–barium emulsion in stock than of the individual substances.
For the production of y there is an identical probability of choosing two amounts
of normal ammonium or the thinned out concentrated version.

Together with the estimation that all conditional branching probabilities
are equal to 0.25 and all presence probabilities to 0.05, we can also derive the
branching probabilities using Proposition 5.36. As a result, we obtain the PFA
shown in Figure 9.2.

For layout purposes we only show the values of pbr for the correct outputs,
and omit the error weights, conditional branching probabilities and the values of
pbr for the erroneous outputs. The error weights and the conditional branching
probabilities were already given textually, and the branching probabilities of the
erroneous traces are all equal to 0.05 · 0.25 = 0.0125.

We consider two erroneous implementations: I1 and I2. For I1, there is a
probability of 0.25 that the system provides ammonium after it has provided
the ammonium–barium emulsion. Furthermore, there is also a probability of
0.25 that nothing happens after the first two steps of producing the chemical y.
Figure 9.3 shows this behaviour as an LTS.

For I2, the first request always results in the correct chemical. From the sec-
ond request on the behaviour is identical to I1. Figure 9.4 shows this behaviour
as an LTS.

Note that the information assumed above would obviously not be known in
practice, but is necessary here to simulate executions.
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s0s1 s2

s3 s4

s7

s5 s6

s8

(1.0)
δ

85

7

a!
(0.25)

δ

(0.25)

x? y?

(0.8) e! a! (0.2)

(0.75) w! b! (1.0)

(0.5) c! a! (0.5)

(1.0) w! a! (1.0)

a! (1.0) b! (0.75)

Figure 9.3: The actual behaviour of an implementation I1
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Figure 9.4: The actual behaviour of an implementation I2
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Figure 9.5: Test cases for A

9.3 Test cases for the implementations

To test the system A, two test cases (t1 and t2) have been derived. They are
shown in Figure 9.5, although for layout purposes only the correct traces have
been included. The omitted erroneous traces can easily be obtained from the
specification, and their error weights were already given in Table 9.1. We will
also consider the test suite T , consisting of three test cases: t1 twice, and t2
once. Formally, T = (t1, t1, t2).

9.3.1 Calculating potential coverage

We start by calculating the potential coverage of both test cases and the test
suite. Note that for every trace σ of the test case where the next step is observ-
ing, the potential coverage is increased by r̄(s) with s = final(σ). Therefore

absPotCov(t1, f) = r̄(final(x?)) + r̄(final(x? e!)) + r̄(final(x? a!))
+ r̄(final(x? e! w!)) + r̄(final(x? e! w! a! x?))
+ r̄(final(x? e! w! a! x? e!)) + r̄(final(x? e! w! a! x? e! w!))
+ r̄(final(x? e! w! a! x? a!)) + r̄(final(x? e! w! a! x? a! b!))
+ r̄(final(x? a! b!)) + r̄(final(x? a! b! a! x?))
+ r̄(final(x? a! b! a! x? e!)) + r̄(final(x? a! b! a! x? e! w!))
+ r̄(final(x? a! b! a! x? a!)) + r̄(final(x? a! b! a! x? a! b!))
= r̄(s1) + r̄(s3) + r̄(s4) + r̄(s7) + r̄(s1) + r̄(s3) + r̄(s7) + r̄(s4)
+ r̄(s7) + r̄(s7) + r̄(s1) + r̄(s3) + r̄(s7) + r̄(s4) + r̄(s7)
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= 51 + 374 + 77 + 72 + 51 + 374 + 72 + 77
+ 72 + 72 + 51 + 374 + 72 + 77 + 72
= 1938

absPotCov(t2, f) = r̄(final(y?)) + r̄(final(y? c!)) + r̄(final(y? a!))
+ r̄(final(y? c! w!)) + r̄(final(y? c! w! b! y?))
+ r̄(final(y? c! w! b! y? c!)) + r̄(final(y? c! w! b! y? c! w!))
+ r̄(final(y? c! w! b! y? a!)) + r̄(final(y? c! w! b! y? a! a!))
+ r̄(final(y? a! a!)) + r̄(final(y? a! a! b! y?))
+ r̄(final(y? a! a! b! y? c!)) + r̄(final(y? a! a! b! y? c! w!))
+ r̄(final(y? a! a! b! y? a!)) + r̄(final(y? a! a! b! y? a! a!))
= r̄(s2) + r̄(s5) + r̄(s6) + r̄(s8) + r̄(s2) + r̄(s5) + r̄(s8) + r̄(s6)
+ r̄(s8) + r̄(s8) + r̄(s2) + r̄(s5) + r̄(s8) + r̄(s6) + r̄(s8)
= 51 + 374 + 77 + 72 + 51 + 374 + 72 + 77
+ 72 + 72 + 51 + 374 + 72 + 77 + 72
= 1938

Apparently, the potential coverage of both test cases is equal. Since the
error weights were chosen symmetrically for traces starting with an x? and
traces starting with a y?, this was also expected.

For the test suite, we have to take the union of all erroneous traces in
its test cases and calculate the potential coverage of the resulting trace set.
Since t1 and t2 are disjoint this can easily be seen equal to absPotCov(t1, f) +
absPotCov(t2, f) = 1938 + 1938 = 3876.

9.3.2 Calculating expected actual coverage

Before simulating test executions, we first calculate the expected actual coverage
of both test cases and the test suite for 1, 5, 10, 50 and 250 executions. Recall
that the following formula was derived in Theorem 7.5.

E(Ant,f ) =
∑

σa∈errt

f(σa) ·
(

(1− (1− pto
t (σa))n) · 1 +

n∑
k=0

(
n

k

)
pto
t (σ)k(1− pto

t (σ))n−k·

(1− pbr
t (a | σ))kpcov

t (σa, k)

)
Note that this calculation uses several probabilities, each of which can be ob-
tained from the information provided thus far.

As an example we discuss the contribution of the erroneous trace σa =
x? e! a! of t1, for n = 5. For this trace, we have

f(x? e! a!) = r(final(x? e!), a!) = r(s3, a!) = 85

pto(x? e! a!) = 1.0 · 0.76 · 0.0125 = 0.0095
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pto(x? e!) = 1.0 · 0.76 = 0.76

pbr(a! | x? e!) = 0.0125

pcov(x? e! a!, k) = 1− (1− pcbr(a! | x? e!))k = 1− (1− 0.25)k

Note that f(x? e! a!) was calculated using Definition 2.25, pto using Proposi-
tion 5.15 and pcov using Proposition 6.6. We can now calculate the contribution
of the erroneous trace x? e! a!:

f(x? e! a!) ·
(

(1− (1− pto
t (x? e! a!))n) · 1 +

n∑
k=0

(
n

k

)
pto
t (x? e!)k(1− pto

t (x? e!))n−k·

(1− pbr
t (a! | x? e!))kpcov

t (x? e! a!, k)

)

= 85

(
1− (1− 0.0095)n +

5∑
k=0

(
5
k

)
0.76k(1− 0.76)5−k(1− 0.0125)k(1− 0.25k)

)
= 56.6

Performing similar calculations for all other faults and summing the results, we
obtain E(A5

t1,f
). Doing this also for different values of n and for t2, we obtain

the first two columns of Table 9.2.
For the test suite, the formula from Theorem 8.13 can be used. Note that it

sums over faults potentially covered by the test suite, applying almost the same
calculation as was the case for test cases. The only difference is that instead of
using n, we use cT (σa)n.

Since t1 and t2 are disjoint, the contribution to E(AnT,f ) of the faults in t2
is equal to their contribution to E(Ant2,f ). Furthermore, the contribution of the
faults in t1 is just equal to their contribution to E(A2n

t1,f
), since cT (σa) = 2 for

all σa ∈ t1. This results in the observation that E(nT,f ) = E(2nt1,f )+E(nt2,f ). Using
this formula, the expected actual coverage for the test suite executions is given in
the last column of Table 9.2. Observe that indeed E(A5

T,f ) = E(A10
t1,f

)+E(A5
t2,f

).
Figure 9.6 shows a graph of the expected actual coverage of both t1, t2, and

T , for n = 1 . . . 100. The potential coverage of the test cases (1938) and of the
test suite (3876) have also been indicated in the graph. We can see that t1, t2,

E(A1
t1,f

) = 197.0 E(A1
t2,f

) = 156.8 E(A1
T,f ) = 520.2

E(A5
t1,f

) = 729.1 E(A5
t2,f

) = 639.8 E(A5
T,f ) = 1716.7

E(A10
t1,f

) = 1076.9 E(A10
t2,f

) = 1032.1 E(A10
T,f ) = 2423.8

E(A50
t1,f

) = 1704.6 E(A50
t2,f

) = 1848.0 E(A50
T,f ) = 3695.3

E(A250
t1,f

) = 1917.7 E(A250
t2,f

) = 1938.0 E(A250
T,f ) = 3873.3

Table 9.2: Prediction of actual coverage for t1, t2 and T
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Figure 9.6: Expected actual coverage of t1, t2, and T

and T indeed approach their potential coverage for a large number of executions
(as was also proved mathematically).

Interestingly, it turns out that t1 performs better than t2 if the test case is
to be executed thirteen times or less, while t2 is better if it is executed more
often.

The fact that t1 has a higher expected actual coverage than t2 for a small
number of executions can be understood by observing that the probability of
reaching a state from where faults with high error weights are covered (s3 and
s5) is much larger in t1 than in t2. For a large number of executions, however, t2
will on average also cover these faults many times. Moreover, it covers the states
with less severe faults many times, while t1 covers these less often. Because of
the nonlinearity of pcov this results in a higher expected actual coverage for t2.

9.4 Executing the test cases and test suite

We illustrate the calculation used to obtain the actual coverage of an execu-
tion, by performing it for x? e! w! a! x? e! a!. Note that by Definition 6.3 and
Proposition 6.6 we have

pcov
t (σm, x? e! w! a! x? e! a!)

=

 1 , if σm = x? e! w! a! x? e! a!
1− (1− 0.25)1 = 0.25 , if σ v x? e! w! a! x? e! a!
0 , otherwise

Using this observation, we obtain

absCov(x? e! w! a! x? e! a!, f)

=
∑

σm!∈errt

faultCov(σm!, x? e! w! a! x? e! a!, f)

=
∑

σm!∈errt

f(σm!) · pcov(σm!, x? e! w! a! x? e! a!)
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= (f(x? b!) + f(x? c!) + f(x? w!) + f(x? δ)) · 0.25
+ (f(x? e! a!) + f(x? e! b!) + f(x? e! e!) + f(x? e! c!) + f(x? e! δ)) · 0.25
+ (f(x? e! w! b!) + f(x? e! w! e!) + f(x? e! w! c!) + f(x? e! w! w!) + f(x? e! w! δ)) · 0.25
+ (f(x? e! w! a! x? b!) + f(x? e! w! a! x? c!)+

f(x? e! w! a! x? w!) + f(x? e! w! a! x? δ)) · 0.25
+ (f(x? e! w! a! x? e! b!) + f(x? e! w! a! x? e! e!)+

f(x? e! w! a! x? e! c!) + f(x? e! w! a! x? e! δ)) · 0.25 + f(x? e! w! a! x? e! a!) · 1.0
= (17 + 12 + 11 + 11 + 85 + 60 + 67 + 91 + 71 + 13 + 8 + 25 + 18 + 8

17 + 12 + 11 + 11 + 60 + 67 + 91 + 71) · 0.25 + 85 = 294.3

Besides evaluating the actual coverage of individual test executions, our
framework also provides methods to evaluate the actual coverage of sequences
of executions.

To demonstrate the calculations used to obtain the simulation results, we
evaluate the absolute actual coverage of the following sequence of executions:

E = x? e! a!
x? e! w! a! x? e! a!
x? e! w! a! x? e! a!
x? e! w! a! x? a! b! a!
x? a! b! a! x? a! b! a!

We obtain

absCov(E, f)

=
∑

σm!∈errt

faultCov(σm!, E, f)

=
∑

σm!∈errt

f(σm!) · pcov(σm!, E)

= (f(x? b!) + f(x? c!) + f(x? w!) + f(x? δ)) · (1− (1− 0.25)5)

+ (f(x? e! b!) + f(x? e! e!) + f(x? e! c!) + f(x? e! δ)) · (1− (1− 0.25)4)

+ (f(x? a! a!) + f(x? a! e!) + f(x? a! c!) + f(x? a! w!) + f(x? a! δ)) · (1− (1− 0.25)1)

+ (f(x? e! w! b!) + f(x? e! w! e!) + f(x? e! w! c!) + f(x? e! w! w!)+

f(x? e! w! δ)) · (1− (1− 0.25)3)

+ (f(x? a! b! b!) + f(x? a! b! e!) + f(x? a! b! c!) + f(x? a! b! w!)+

f(x? a! b! δ)) · (1− (1− 0.25)1)

+ (f(x? e! w! a! x? b!) + f(x? e! w! a! x? c!)+

f(x? e! w! a! x? w!) + f(x? e! w! a! x? δ)) · (1− (1− 0.25)3)

+ (f(x? a! b! a! x? b!) + f(x? a! b! a! x? c!)+

f(x? a! b! a! x? w!) + f(x? a! b! a! x? δ)) · (1− (1− 0.25)1)

+ (f(x? e! w! a! x? a! a!) + f(x? e! w! a! x? a! e!) + f(x? e! w! a! x? a! c!)+

f(x? e! w! a! x? a! w!) + f(x? e! w! a! x? a! δ)) · (1− (1− 0.25)1)

+ (f(x? a! b! a! x? a! a!) + f(x? a! b! a! x? a! e!) + f(x? a! b! a! x? a! c!)+

f(x? a! b! a! x? a! w!) + f(x? a! b! a! x? a! δ)) · (1− (1− 0.25)1)

+ (f(x? e! w! a! x? a! b! b!) + f(x? e! w! a! x? a! b! e!)+

f(x? e! w! a! x? a! b! c!) + f(x? e! w! a! x? a! b! w!)+

f(x? e! w! a! x? a! b! δ)) · (1− (1− 0.25)1)
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+ (f(x? a! b! a! x? a! b! b!) + f(x? a! b! a! x? a! b! e!)+

f(x? a! b! a! x? a! b! c!) + f(x? a! b! a! x? a! b! w!)+

f(x? a! b! a! x? a! b! δ)) · (1− (1− 0.25)1)

+ (f(x? e! w! a! x? e! b!) + f(x? e! w! a! x? e! e!)+

f(x? e! w! a! x? e! c!) + f(x? e! w! a! x? e! δ)) · (1− (1− 0.25)2)

+ f(x? e! a!) · 1.0 + f(x? e! w! a! x? e! a!) · 1.0

= 51 · (1− (1− 0.25)5) + 289 · (1− (1− 0.25)4) + 77 · (1− (1− 0.25)1)

+ 72 · (1− (1− 0.25)3) + 72 · (1− (1− 0.25)1) + 51 · (1− (1− 0.25)3)

+ 51 · (1− (1− 0.25)1) + 77 · (1− (1− 0.25)1) + 77 · (1− (1− 0.25)1)

+ 72 · (1− (1− 0.25)1) + 72 · (1− (1− 0.25)1) + 289 · (1− (1− 0.25)2) + 85 + 85 = 728.5

9.4.1 Simulating test case executions

For both I1 and I2 we simulated 20 executions for t1 and 20 executions for t2. A
random number generator has been used to determine which outputs the system
provides, based on the probabilistic models shown in Figure 9.3 and Figure 9.4.

Table 9.3 and Table 9.4 show which executions occurred, how often they
occurred and each execution’s individual absolute actual coverage. We discuss
the results separately for I1 and I2. Since executions of the test suite are just
tuples of executions of t1 and t2, these are omitted from the discussion.

Executing I1
Dealing with I1, the average actual coverage of the sample for t1 is 216.6. The
fact that we obtained an average higher than E(A1

t1,f
) = 197.0 can be explained

by the observation that one of the faults that were chosen to be present is
coincidentally of higher error weight than the average fault. This severe fault
can be detected by t1, resulting in more actual coverage.

The average actual coverage of the sample for t2 is 156.4; a satisfactory result
given that we calculated E(A1

t2,f
) = 156.8 in advance.

Executing I2
Dealing with I2, the average actual coverage of the sample for t1 is 228.0. For
t2, we have an average of 183.5.

The fact that we obtained averages that are even higher can be explained by
the fact that we assumed for each fault a presence probability of 0.05. Therefore,
on average one out of every twenty erroneous traces is assumed to be present.

Executions of t1 # absCov Executions of t2 # absCov
x? e! a! 5 170.0 y? c! w! δ 3 129.5
x? e! w! a! x? e! a! 6 294.3 y? a! a! b! y? c! w! δ 1 179.5
x? e! w! a! x? e! w! a! 3 248.5 y? a! a! b! y? a! a! δ 1 105.3
x? e! w! a! x? a! b! a! 3 174.3 y? c! w! b! y? c! w! δ 1 253.8
x? a! b! a! x? e! w! a! 2 174.3 y? c! w! b! y? a! a! b! 5 174.3
x? a! b! a! x? a! b! a! 1 100.0 y? a! a! b! y? a! a! b! 2 100.0

y? a! a! δ 2 55.3
y? a! a! b! y? c! w! b! 3 174.3
y? c! w! b! y? c! w! b! 2 248.5

Table 9.3: Simulating 20 executions of t1 and t2 using I1



9.4. Executing the test cases and test suite 103

Executions of t1 # absCov Executions of t2 # absCov
x? e! w! a! x? e! w! a! 8 248.5 y? c! w! b! y? c! w! δ 4 253.8
x? e! w! a! x? a! b! a! 5 174.3 y? c! w! b! y? a! a! b! 2 174.3
x? e! w! a! x? e! a! 4 294.3 y? a! a! b! y? a! a! b! 3 100.0
x? a! b! a! x? e! w! a! 3 174.3 y? a! a! b! y? c! w! b! 6 174.3

y? c! w! b! y? a! a! δ 1 179.5
y? c! w! b! y? c! w! b! 2 248.5
y? a! a! b! y? a! a! δ 1 105.3
y? a! a! b! y? c! w! δ 1 179.5

Table 9.4: Simulating 20 executions of t1 and t2 using I2

Although this is indeed approximately the case in I2, during the first part of our
test cases no faults are present. Therefore, we obtain executions that are longer
than expected, showing the absence of more faults and therefore obtaining more
actual coverage.

We can also directly observe that the executions that are present in I1 but
not in I2 (x? e! a!, y? c! w! δ, and y? a! a! δ), are the traces with the lowest
absolute actual coverage. This immediately explains that testing I2 yields a
higher actual coverage than testing I1.

Although the simulation of 20 executions gives insight in the procedure of
test executions, it is actually not quite representative to make a comparison
between the predicted and simulated actual coverage values. After all, some
executions might coincidentally occur often in these small samples, while in the
long run they would only occur sporadically.

Moreover, it is interesting to know how much actual coverage sequences of
executions yield when executing the test cases or test suite several times.

Therefore, we performed several simulations for all combinations of t1, t2,
and T with I1 and I2. For each combination we simulated 10.000 single ex-
ecutions, 10.000 sequences of 5 executions, 10.000 sequences of 10 executions,
10.000 sequences of 50 executions, and 10.000 sequences of 250 executions. We
calculated the actual coverage of each of these sequences, and took the aver-
ages. Moreover, we calculated the standard deviation for each of the samples,
indicating the width of the distribution.

Table 9.5 shows the expected values obtained earlier and the results of the
simulations for I1. Table 9.6 shows this information for I2. For layout purposes,
the subscript f has been omitted from E(Anti , f). The notation Sim. is used to
denote the average of the simulation results.

t1 t2 T

n E(Ant1
) Sim. std. E(Ant2

) Sim. std. E(AnT ) Sim. std.

1 197.0 213.3 50.1 156.8 155.1 60.8 520.2 543.0 88.0

5 729.1 762.1 84.0 639.8 629.7 107.0 1716.7 1742.5 150.0

10 1076.9 1112.6 104.8 1032.1 1013.3 114.8 2423.8 2443.7 161.4

50 1704.6 1743.3 62.4 1848.0 1831.2 39.5 3695.3 3697.9 50.0

250 1917.7 1925.8 11.2 1938.0 1938.0 0.0 3873.3 3875.0 1.4

Table 9.5: Simulation results for I1
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t1 t2 T

n E(Ant1
) Sim. std. E(Ant2

) Sim. std. E(AnT ) Sim. std.

1 197.0 229.1 48.4 156.8 174.7 52.0 520.2 591.5 73.5

5 729.1 813.9 56.5 639.8 711.6 89.4 1716.7 1878.9 130.6

10 1076.9 1167.9 94.8 1032.1 1133.6 92.9 2423.8 2603.9 146.0

50 1704.6 1757.3 62.9 1848.0 1890.7 19.4 3695.3 3762.0 35.4

250 1917.7 1926.0 11.1 1938.0 1938.0 0.0 3873.3 3875.0 1.5

Table 9.6: Simulation results for I2

Interpretation
As explained earlier, the simulations of I1 yield a slightly higher actual coverage,
since one of the faults that were chosen to be present is coincidentally of higher
error weight than the average fault.

Furthermore, the simulations of I2 result in an even higher actual coverage,
because of the absence of faults during the first request. This results in longer
executions, showing the absence of more faults and that way achieving more
actual coverage.

Nevertheless, the expected actual coverage values are all quite close to their
corresponding simulation results. For the combination of I1 and t2, which most
accurately corresponds to the estimated probabilistic behaviour of the system,
the errors in our predictions are even less than two percent of the simulation
results.

As stated before, this example is solely meant as a demonstration of the
framework. An extensive future study applying actual coverage to real software
projects would be necessary to fully show the usability, sensitivity and accu-
racy of our methods. However, the current results provide good hope for the
applicability of our measures.



Chapter 10
Conclusions and Future Work

In this thesis, we developed a framework for actual coverage. This chapter first
summarises the main results, listing the most important concepts that were
developed. Then, we evaluate our framework by discussing the main advan-
tages and disadvantages. Also, we recall the requirements for actual coverage
discussed in Section 4.2, explaining how our methods meet these requirements.
Finally, directions for future work are proposed.

Organisation of this chapter
First, the summary is given in Section 10.1. Then, the evaluation is discussed
in Section 10.2. Finally, future work is covered in Section 10.3.

10.1 Summary of the results

• We first extended the existing framework for potential coverage from
[BBS06], explaining in detail how to deal with nondeterministic systems.
The notion of quiescence was updated to support its preservation under
determinisation.

• We developed a new notion of coverage: actual coverage. It deals not
only with test cases or test suites, but also with the number of executions
planned and the probabilistic behaviour of the system. Using this notion,
we defined the actual coverage distribution of test cases.

• Actual coverage resembles the notion of potential coverage of [BBS06] in
the sense that it accumulates the error weights of faults in a test case or test
suite. However, we take only a fraction of each error weight, equal to the
coverage probability of the corresponding fault. This coverage probability
indicates how certain we know whether or not the fault is present. For an
infinite amount of executions, our notion coincides with potential coverage.

• We introduced the probabilistic execution model (PEM), containing the
probabilities necessary to evaluate the actual coverage of a given execution
and to predict the actual coverage a test case or test suite will yield.
We introduced probabilistic fault automata (PFAs) to syntactically specify
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PEMs. Moreover, we provided an efficient method to predict the actual
coverage of both test cases and test suites.

10.2 Evaluation

We obtained a framework that supports describing the expected behaviour of a
system. Based on this information it calculates the actual coverage of a given
execution or sequence of executions, and predict the actual coverage a test case
or test suite will yield. The framework is therefore useful in test evaluation, but
also in test selection. Since the most important properties can be calculated in
polynomial time, it seems feasible to implement the theory in a tool.

Although an extensive case study would be necessary to fully show the usabil-
ity, sensitivity and accuracy of our methods, our detailed example demonstrated
that our methods indeed can be applied to small examples. Moreover, another
research project our group is currently working on showed that the notion of
potential coverage indeed gives an indication for how well a test suite will be
able to detect erroneous behaviour [Men08]. Since our framework is based on
the same philosophies, this is quite promising.

The necessity of many estimations might limit the usability of our framework.
However, the approximations we proposed reduce this limitation substantially.
Still, these approximations have to be thoroughly verified by future research.
Another approach would be to estimate probabilities during the test process, as
indicated in Section 10.3.

We list the requirements of actual coverage discussed in Section 4.2 once
more, and discuss for each requirements to what extend it has been met.

1. When the number of executions of a test case approaches infinity, its actual
coverage should approach its potential coverage.

Fulfillment:
This requirement has been fulfilled completely, as proved formally in
Theorem 7.5 and Theorem 8.13. The only assumption for the prove
to remain valid is that all errors defined in a test case are actually
reachable. It is obvious that this assumption was necessary, since un-
reachable errors are accounted for in the potential coverage measure,
while of course one would not want the actual coverage measure to ever
include them.

2. The actual coverage of a sequence of test case or test suite executions E
should be larger than or equal to the actual coverage of a sequence of
executions E′ ⊆ E.

Fulfillment:
Looking at the definition of coverage probabilities and actual coverage
in Section 6.2 and Section 6.3, observe that the coverage of any number
of executions is defined as a sum over all erroneous traces in the test
case, multiplying the error weight of each trace by its coverage prob-
ability. From the definition of coverage probabilities it is immediate
that increasing the number of executions cannot decrease the probabil-
ity, therefore remaining at the same or obtaining an increased actual
coverage.
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3. Correct executions might have a nonzero actual coverage value.

Fulfillment:
Since coverage probabilities have been defined to be positive if a state
has been reached from where an error could occur, even correct exe-
cutions can have a nonzero value for actual coverage. Example 6.12
provided the calculation of the actual coverage of a correct execution,
showing it is nonzero.

4. Observing the same correct execution more often should increase actual
coverage, with an amount depending on the probability with which po-
tential failures on its path occur. It should depend on the error weights
of the corresponding faults as well.

Fulfillment:
The definition of coverage probabilities in Section 6.2 shows that it de-
pends on both the conditional branching probability of a fault and the
number of executions covering it. The more correct executions covering
it, the higher the coverage probability. After observing an erroneous
execution the coverage fraction cannot increase anymore, since it is
already 1.

5. After an execution terminated by failure, later executions observing either
the presence or absence of the corresponding fault should not influence its
actual coverage anymore.

Fulfillment:
Immediately from the definition of coverage probabilities.

10.3 Future work

Our work motivates several interesting directions for future research.
First, it is crucial to validate our framework by means of a series of case

studies. Obviously, tool support is an essential prerequisite. The case studies
should at least investigate how well software engineers can estimate the prob-
abilities necessary for our calculations. They might reveal the accuracy of the
estimations, but also the effect of inaccuracies on the results (sensitivity).

Second, it could be useful to take into account the dependencies between
erroneous traces. As indicated in Section 5.7, at the moment we still assume
that observing a fault from some state s after a trace σ does not necessarily
mean that the same fault is also present from s after a trace σ′ 6= σ. In practice
it might often be the case that a fault is present after any trace ending in some
state, or maybe after any trace with at least a certain length.

Third, more work should be done to investigate the accuracy of the approx-
imations we proposed at the end of Section 5.8.3 and in Section 7.4. Although
they appeared to be accurate for small examples, this has yet to be proved for
industrial applications.

Fourth, it would be very interesting to investigate the possibilities of on-the-
fly test derivations using actual coverage. This could result in a tool, calculating
probabilities while testing and deciding which branches to take during the pro-
cess. This might lift a large burden, since several estimations might be left to
the tool.





Appendix A
The subset construction algorithm

Algorithm A.1 gives the subset construction in pseudo-code, with a few extra
lines of functionality for incorporating the error weight function.

The algorithm starts by an initialization, during which the alphabet and the
initial state of the deterministic LTS A are set equal to the alphabet and the
initial state of the non-deterministic LTS N . Furthermore, that initial state
is added to the set of states of A and it is added to an auxiliary variable F
containing all states of A for which not all transitions have been included yet.
Notice that we do not just add s0, we add {s0}. The reason for this is that we
identify states of A as sets of states of N . If for example N can be in either
state s1, s2 or s5, we say that A is in state {s1, s2, s5}.

After the initialization, we take a state S′ from the auxiliary variable F and
add the appropriate transitions from it to other states. This involves iterating
over all possible actions in the alphabet, and calculating for each action the set of
states of N (called Y ) that can be reached from one of the states contained in S′.
Suppose Y is the empty set for some action a, then apparently no a transition
can occur from any of the states in S′. Therefore, we do not add anything to
A and we just continue. If Y is not empty and it is not yet contained in S2, we
add it to S2 and we also add it to F . We then add a transition labeled a from
S′ to Y , indicating that if the system is in one of the states of S′, it can after
that go to one of the states of Y by an a transition. After this has been done
for all actions, we are done with S′ and it is accordingly removed from F . This
process continues, until all states have been processed (i.e., F is empty).

Thus far, we described the regular subset construction algorithm. However,
we updated the classical version such that it defines the error weight function for
the resulting deterministic FA. It is not hard to see how this works. When a tran-
sition is added from a state S′ to a state Y by an action a, we set r2(S′, a) = 0.
After all, this transition is apparently possible and therefore correct. However,
in case we find that for some output action there are no states reachable from
any of the states contained in S′, we know that this output action is erroneous
in S′. Therefore, we give r2(S′, a) a positive value, obtained by taking the min-
imum over all error weights defined for outputting a in the states contained in
S′.
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Algorithm A.1: The subset algorithm incorporating error weights
Input: a non-deterministic LTS N = 〈S, s0, LO ∪ LI ,∆〉 and a function

r : S × LO → R≥0

Output: the equivalent deterministic LTS A = 〈S2, s
0
2, L

O
2 ∪ LI2,∆2〉 and

its function r2 : S2 × LO2 → R≥0

Initialization
S2 ← {{s0}}
F ← {{s0}}
s02 ← s0

L2 ← L

repeat
Let S′ ∈ F
forall a ∈ L ∪ {δ} do

Y ←
⋃
si∈S′

{s′ ∈ S | (si, a, s′) ∈ ∆}

if a ∈ LO ∧ Y = ∅ then
let r2(S′, a) = min

si∈S′
r(si, a)

else if Y 6= ∅ then
if Y 6∈ S2 then

add Y to S2

add Y to F
end
add the transition (S′, a, Y ) to ∆2

let r2(S′, a) = 0
end

end
remove S′ from F

until F = ∅

A.1 An example

Now that the algorithm is given, we clarify the procedure by working through
a detailed example, based on the fault automaton of Figure A.1. We will refer
to that FA by F = 〈〈S, s0, L,∆〉, r〉, and to the resulting deterministic FA by
F2 = 〈〈S2, s

0
2, L2,∆2〉, r2〉.

Example A.1. As explained, we start with an initialization. We add the state
{s0} to S2, and give it the correct alphabet and initial state. Furthermore, F
is initialized to {{s0}}. The intermediate F2 is shown in Figure A.2(a) on page
112.

Then, we choose an element of F for the first iteration. Since F only contains
{s0}, this state is chosen. We check for each action in the alphabet what can
happen in state s0 of F . Since an a! transition to either s0, s1 or s2 can take
place, we add the state {s0, s1, s2} to S2, and we add a transition labeled a!
from {s0} to {s0, s1, s2}. No c! transition can take place from s0, but since this
is an output action nothing has to be added to F2 to denote that. Also no
b! transition can take place, but since this is an output action now we should
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s0 s1
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a!

b!a!

c!

a!

δ c?

5
b!

2 δ
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2δ

7
a!

9
b!

Figure A.1: A nondeterministic fault automaton

add an error weight. There is only one applicable error weight defined in F ,
namely 5, so this is added to F2. Likewise, an error weight of 2 is assigned to
the quiescence action δ. The intermediate F2 is shown in Figure A.2(b).

Now, we will add the transitions for the {s0, s1, s2} state. No a! transition
can occur from s1 or s2, but from s0 there are a! transitions to s0, s1 and
s2. Therefore, we add a transition from {s0, s1, s2} labeled a! to itself. A b!
transition can take place from s1 to s2, but from no state in the set {s0, s1, s2}
we can go by a b! transition to any other state. Therefore, we add the state
{s2} to S2 and add a transition from {s0, s1, s2} to it, labeled b!. Likewise, a
transition from {s0, s1, s2} to {s2} labeled δ is added. Looking at c? transitions,
we observe that it is possible to go to state s2 or to s1 in case we were in s2, so
we add the state {s1, s2} to S2 and we add a transition from {s0, s1, s2} to it,
labeled c?. The intermediate F2 is shown in Figure A.2(c).

During the previous iteration, both {s2} and {s1, s2} were added to S2, and
therefore to F . Hence, for the next iteration we can choose which state to
process. This choice does not influence the output, only the intermediate fault
automata [Sud97]. Let’s say we choose {s2}. From there, a δ brings us back to
the same state. No a! should occur, and this error is given the weight 7 (r(s2, a!)
in the original fault automaton). Similarly, an error weight of 9 is added for b!.
By a c? transition we can go to either s1 or s2, so a transition from {s2} to
{s1, s2} labeled c? is added. The intermediate F2 is shown in Figure A.2(d).

Finally, in the last iteration {s1, s2} is processed. It is interesting to see
what happens to the a! transition here. In neither s1 nor s2 an a! transition can
occur, so it is erroneous. We have r(s1, a!) = 8 and r(s2, a!) = 7, so since the
algorithm states that we take the minimum, we have r2({s1, s2}, a!) = 7.

The final deterministic automaton F2 is shown in Figure A.2(e).

A.2 Complexity

If a non-deterministic automaton has a state set S with n elements, then all
combinations of these states can appear as a state in the deterministic equivalent
automaton. Since these combinations are elements of the powerset of S, the
algorithm is sometimes refered to as the powerset construction. From basic
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Figure A.2: Removing non-determinism
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combinatorics it follows that the deterministic automaton can have at most 2n

states.
Looking at the algorithm, it is not difficult to see that the time in which it

operates is therefore in worst-case exponentially related to the number of states
of its input automaton. The forall loop is even executed at most 2nm times,
where m is the number of actions in the alphabet.

The space complexity can be quite bad as well. The number of transitions in
the resulting deterministic automaton is at most 22nm; an exponential growth
as compared to the maximum of n2m transitions in the non-deterministic input
automaton.

However, despite these disappointing worst-case scenarios, the subset con-
struction method is still used a lot. According to [Kla98], it behaves usually
very well in practice, often resulting in a deterministic automaton with even less
states than the original non-deterministic automaton.

For more information on efficient implementations of and optimization for
the subset construction, we refer to [Les95].





Appendix B
Lemmas for Theorem 7.7

Lemma B.1. Let p and q be probabilities, p > 0, q < 1 and n ∈ N. Then

n∑
i=0

(
n

i

)
pi(1− p)n−i · (1− qi) ≤

n∑
i=0

(
n

i

)
pi(1− p)n−i = 1

Proof. The term
(
n
i

)
pi(1 − p)n−i corresponds to the probability of having i

successes in n Bernoulli experiments with parameter p. It follows directly that
the sum of this term over all i from 0 to n is equal to 1, as stated by the equality,
since it sums over the probabilities of all possible number of successes.

Furthermore, from the requirement 0 ≤ q < 1 we obtain ∀i ≥ 0 : 0 ≤ qi ≤ 1,
and therefore ∀i ≥ 0 : 0 ≤ (1− qi) ≤ 1, proving the inequality.

Lemma B.2. Let p, q and r be probabilities, p > 0, q, r < 1 and n ∈ N. Then

lim
n→∞

n∑
i=0

(
n

i

)
pi(1− p)n−i · (1− qi) · ri = 0

Proof. By the definition of limits it needs to be shown that for all ε > 0 there
exists a δ > 0, such that for all n > δ∣∣∣∣∣

n∑
i=0

(
n

i

)
pi · (1− p)n−i · (1− qi) · ri

∣∣∣∣∣ < ε (B.1)

Without loss of generality, assume 0 < ε < 1. Now find a value η such that

(1− qη)rη <
ε

2

Such an η exists, because by the assumptions on q and r we know that
limη→∞(1− qη)rη = limη→∞(1− qη) · limη→∞ rη = 1 · 0 = 0.

It follows directly that

∀i ≥ η : (1− qi)ri < ε

2
(B.2)
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Now find a value δ such that
η∑
i=0

(
δ

i

)
pi · (1− p)δ−i · (1− qi) · ri < ε

2

Such a δ exists, because (1 − qi)ri is obviously always smaller than 1 and∑η
i=0

(
δ
i

)
pi·(1−p)δ−i denotes the probability of 0 . . . η successes when performing

δ Bernoulli experiments with parameter p. It is trivial that the probability of
0 . . . η successes approaches 0 when δ approaches ∞ (using the assumption that
p > 0), so a δ for which it is smaller than ε

2 exists.
Then, for n > δ

n∑
i=0

(
n

i

)
pi · (1− p)n−i · (1− qi)ri =

η∑
i=0

(
n

i

)
pi · (1− p)n−i · (1− qi)ri

+
n∑

i=η+1

(
n

i

)
pi · (1− p)n−i · (1− qi)ri

<
ε

2
+
ε

2
= ε.

The fact that
∑η
i=0

(
n
i

)
pi · (1− p)n−i · (1− qi)ri < ε

2 follows from the choice
of δ, while

∑n
i=η+1

(
n
i

)
pi · (1− p)n−i · (1− qi)ri < ε

2 follows from Equation B.2
and Lemma B.1.

It can easily be seen that no summand can be negative, so this proves the
correctness of Equation B.1. Because δ was derived for an arbitrary ε, this
proves Lemma B.2.
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List of Notations, Functions and
Abbreviations

Operators

σv∀ X For all members ei of the tuple X we have σ v ei, page 38

σv∃ X There exists a member ei of the tuple X such that σ v ei,
page 38

σv@ X There does not exist a member ei of the tuple X such that
σ v ei, page 38

@ Proper prefix, page 10

v Prefix, page 10

| σ | The length of a trace σ, page 9

Symbols

δ The quiescence action, page 12

E The expected value of a random variable, page 67

fαF The discounted WFM of an FA, page 19

fkF The finite depth WFM of an FA, page 18

fptot A risk-based weighted fault model, page 52

N A nondeterministic LTS, page 22

Ω A sample space, page 36

P A probability distribution function for a random variable,
page 36

P A probability distribution function for a probability space,
page 36
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122 List of Notations, Functions and Abbreviations

SX The codomain of the random variable X, page 36

Random variables

Ant,f The random variable denoting the absolute actual coverage of
Xn
t given the WFM f , page 66

At,f The random variable denoting the absolute actual coverage of
Xt given the WFM f , page 65

Rnt,f The random variable denoting the relative actual coverage of
Xn
t given the WFM f , page 66

Rt,f The random variable denoting the relative actual coverage of
Xt given the WFM f , page 65

Xn
t The random vector denoting the sequence of executions that

n trials of Xt yield, page 38

Xt The random variable denoting the trace obtained when exe-
cuting the test case t once, page 37

SoPt(σ) The random variable denoting the state of presence of the
trace σ, page 42

Sets

Distr(S) The set of all distribution functions over S, page 10

errt The set of all erroneous executions of t, page 13

exect The set of all executions of t (maximal traces), page 13

innert The set of all non-maximal traces it t, page 13

tracesA The set of all traces of the LTS A, page 12

L∗ The set of all traces over L, page 9

Functions

absCov The absolute actual coverage function, page 59

absPotCov The absolute potential coverage function, page 15

faultCov The fault coverage function, page 59

finalA The final state function, page 12

observedSoP The observed state of presence function, page 61

pbr The branching probability function, page 39

pcbr The conditional branching probability function, page 42

pfbr The flawless branching probability function, page 45
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pcov The coverage probability function, page 56

ppr The presence probability function, page 46

pscbr The specialised conditional branching probability function,
page 47

pto The trace occurrence function, page 39

r The error weight function, page 17

r̄ The accumulated error weight function, page 17

relCov The relative actual coverage function, page 59

relPotCov The relative potential coverage function, page 15

totCov The total coverage function, page 15

v The verdict function, page 14

Abbreviations

FA Fault automaton, page 17

LTS Input-output labeled transition system, page 10

PFA Probabilistic fault automaton, page 44

WFM Weighted fault model, page 15


