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Abstract. We present a new method for fighting the state space explo-
sion of process algebraic specifications, by performing static analysis on
an intermediate format: linear process equations (LPEs). Our method
consists of two steps: (1) we reconstruct the LPE’s control flow, detect-
ing control flow parameters that were introduced by linearisation as well
as those already encoded in the original specification; (2) we reset pa-
rameters found to be irrelevant based on data flow analysis techniques
similar to traditional liveness analysis, modified to take into account the
parallel nature of the specifications. Our transformation is correct with
respect to strong bisimilarity, and never increases the state space. Case
studies show that impressive reductions occur in practice, which could
not be obtained automatically without reconstructing the control flow.

1 Introduction

Our society depends heavily on computer systems, asking increasingly for meth-
ods to verify their correctness. One successful approach is model checking; per-
forming an exhaustive state space exploration. However, for concurrent systems
this approach suffers from the infamous state space explosion, an exponential
growth of the number of reachable states. Even a small system specification can
give rise to a gigantic, or even infinite, state space. Therefore, much attention
has been given to methods for reducing the state space.

It is often inefficient to first generate a state space and then reduce it, since
most of the complexity is in the generation process. As a result, intermediate
symbolic representations such as Petri nets and linear process equations (LPEs)
have been developed, upon which reductions can be applied. We concentrate
on LPEs, the intermediate format of the process algebraic language μCRL [12].
Although LPEs are a restricted part of μCRL, every specification can be trans-
formed to an LPE by a procedure called linearisation [13, 19]. Our results could
also easily be applied to other formalisms employing concurrency.

An LPE is a flat process description, consisting of a collection of summands
that describe transitions symbolically. Each summand can perform an action
and advance the system to some next state, given that a certain condition based
� This research has been partially funded by NWO under grant 612.063.817 (SYRUP).

Z. Liu and A.P. Ravn (Eds.): ATVA 2009, LNCS 5799, pp. 54–68, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



State Space Reduction of Linear Processes 55

on the current state is true. It has already been shown useful to reduce LPEs
directly (e.g. [5, 14]), instead of first generating their entire (or partial) state
spaces and reducing those, or performing reductions on-the-fly. The state space
obtained from a reduced LPE is often much smaller than the equivalent state
space obtained from an unreduced LPE; hence, both memory and time are saved.

The reductions we will introduce rely on the order in which summands can be
executed. The problem when using LPEs, however, is that the explicit control
flow of the original parallel processes has been lost, since they have been merged
into one linear form. Moreover, some control flow could already have been en-
coded in the state parameters of the original specification. To solve this, we first
present a technique to reconstruct the control flow graphs of an LPE. This tech-
nique is based on detecting which state parameters act as program counters for
the underlying parallel processes; we call these control flow parameters (CFPs).
We then reconstruct the control flow graph of each CFP based on the values it
can take before and after each summand.

Using the reconstructed control flow, we define a parameter to be relevant if,
before overwritten, it might be used by an enabling or action function, or by a
next-state function to determine the value of another parameter that is relevant
in the next state. Parameters that are not relevant are irrelevant, also called
dead. Our syntactic reduction technique resets such irrelevant variables to their
initial value. This is justified, because these variables will be overwritten before
ever being read.

Contributions. (1) We present a novel method to reconstruct the control flow of
linear processes. Especially when specifications are translated between languages,
their control flow may be hidden in the state parameters (as will also hold for our
main case study). No such reconstruction method appeared in literature before.

(2) We use the reconstructed control flow to perform data flow analysis, re-
setting irrelevant state parameters. We prove that the transformed system is
strongly bisimilar to the original, and that the state space never increases.

(3) We implemented our method in a tool called stategraph and provide
several examples, showing that significant reductions can be obtained. The main
case study clearly explains the use of control flow reconstruction. By finding
useful variable resets automatically, the user can focus on modelling systems in
an intuitive way, instead of formulating models such that the toolset can handle
them best. This idea of automatic syntactic transformations for improving the
efficiency of formal verification (not relying on users to make their models as
efficient as possible) already proved to be a fruitful concept in earlier work [21].

Related work. Liveness analysis techniques are well-known in compiler theory [1].
However, their focus is often not on handling the multiple control flows arising
from parallelism. Moreover, these techniques generally only work locally for each
block of program code, and aim at reducing execution time instead of state space.

The concept of resetting dead variables for state space reduction was first
formalised by Bozga et al. [7], but their analysis was based on a set of sequential
processes with queues rather than parallel processes. Moreover, relevance of vari-
ables was only dealt with locally, such that a variable that is passed to a queue



56 J. van de Pol and M. Timmer

or written to another variable was considered relevant, even if it is never used
afterwards. A similar technique was presented in [22], using analysis of control
flow graphs. It suffers from the same locality restriction as [7]. Most recent is [10],
which applies data flow analysis to value-passing process algebras. It uses Petri
nets as its intermediate format, featuring concurrency and taking into account
global liveness information. We improve on this work by providing a thorough
formal foundation including bisimulation preservation proofs, and by showing
that our transformation never increases the state space. Most importantly, none
of the existing approaches attempts to reconstruct control flow information that
is hidden in state variables, missing opportunities for reduction.

The μCRL toolkit already contained a tool parelm, implementing a basic
variant of our methods. Instead of resetting state parameters that are dead given
some context, it simply removes parameters that are dead in all contexts [11].
As it does not take into account the control flow, parameters that are sometimes
relevant and sometimes not will never be reset. We show by examples from the
μCRL toolset that stategraph indeed improves on parelm.

Organisation of the paper. After the preliminaries in Section 2, we discuss the
reconstruction of control flow graphs in Section 3, the data flow analysis in
Section 4, and the transformation in Section 5. The results of the case studies
are given in Section 6, and conclusions and directions for future work in Section 7.

Due to space limitations, we refer the reader to [20] for the full version of the
current paper, containing all the complete proofs, and further insights about ad-
ditional reductions, potential limitations, and potential adaptions to our theory.

2 Preliminaries

Notation. Variables for single values are written in lowercase, variables for sets
or types in uppercase. We write variables for vectors and sets or types of vectors
in boldface.

Labelled transition systems (LTSs). The semantics of an LPE is given in terms
of an LTS : a tuple 〈S, s0, A, Δ〉, with S a set of states, s0 ∈ S the initial state,
A a set of actions, and Δ ⊆ S × A × S a transition relation.

Linear process equations (LPEs). The LPE [4] is a common format for defin-
ing LTSs in a symbolic manner. It is a restricted process algebraic equation,
similar to the Greibach normal form for formal grammars, specifications in the
language UNITY [8], and the precondition-effect style used for describing au-
tomata [16]. Usenko showed how to transform a general μCRL specification into
an LPE [13, 19].

Each LPE is of the form

X(d : D) =
∑

i∈I

∑

ei : Ei

ci(d, ei) ⇒ ai(d, ei) · X(gi(d, ei)),

where D is a type for state vectors (containing the global variables), I a set
of summand indices, and Ei a type for local variables vectors for summand i.
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The summations represent nondeterministic choices; the outer between different
summands, the inner between different possibilities for the local variables. Fur-
thermore, each summand i has an enabling function ci, an action function ai

(yielding an atomic action, potentially with parameters), and a next-state func-
tion gi, which may all depend on the state and the local variables. In this paper
we assume the existence of an LPE with the above function and variable names,
as well as an initial state vector init.

Given a vector of formal state parameters d, we use dj to refer to its jth

parameter. An actual state is a vector of values, denoted by v; we use vj to refer
to its jth value. We use Dj to denote the type of dj , and J for the set of all
parameters dj . Furthermore, gi,j(d, ei) denotes the jth element of gi(d, ei), and
pars(t) the set of all parameters dj that syntactically occur in the expression t.

The state space of the LTS underlying an LPE consists of all state vectors.
It has a transition from v to v′ by an atomic action a(p) (parameterised by the
possibly empty vector p) if and only if there is a summand i for which a vector
of local variables ei exists such that the enabling function is true, the action is
a(p) and the next-state function yields v′. Formally, for all v, v′ ∈ D, there is a
transition v

a(p)−→ v′ if and only if there is a summand i such that

∃ei ∈ Ei · ci(v, ei)∧ ai(v, ei) = a(p)∧ gi(v, ei) = v′.

Example 1. Consider a process consisting of two buffers, B1 and B2. Buffer B1

reads a datum of type D from the environment, and sends it synchronously to
B2. Then, B2 writes it back to the environment. The processes are given by

B1 =
∑

d : D

read(d) · w(d) · B1, B2 =
∑

d : D

r(d) · write(d) · B2,

put in parallel and communicating on w and r. Linearised [19], they become

X(a : { 1, 2 }, b: { 1, 2 }, x : D, y : D) =
∑

d : D a = 1 ⇒ read(d) · X(2, b, d, y) (1)
+ b = 2 ⇒ write(y) · X(a, 1, x, y) (2)
+ a = 2∧ b = 1 ⇒ c(x) · X(1, 2, x, x) (3)

where the first summand models behaviour of B1, the second models behaviour
of B2, and the third models their communication. The global variables a and b
are used as program counters for B1 and B2, and x and y for their local memory.

Strong bisimulation. When transforming a specification S into S′, it is obviously
important to verify that S and S′ describe equivalent systems. For this we will
use strong bisimulation [17], one of the most prominent notions of equivalence,
which relates processes that have the same branching structure. It is well-known
that strongly bisimilar processes satisfy the same properties, as for instance
expressed in CTL∗ or μ-calculus. Formally, two processes with initial states p
and q are strongly bisimilar if there exists a relation R such that (p, q) ∈ R, and

– if (s, t) ∈ R and s
a→ s′, then there is a t′ such that t

a→ t′ and (s′, t′) ∈ R;
– if (s, t) ∈ R and t

a→ t′, then there is a s′ such that s
a→ s′ and (s′, t′) ∈ R.
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3 Reconstructing the Control Flow Graphs

First, we define a parameter to be changed in a summand i if its value after
taking i might be different from its current value. A parameter is directly used
in i if it occurs in its enabling function or action function, and used if it is either
directly used or needed to calculate the next state.

Definition 1 (Changed, used). Let i be a summand, then a parameter dj is
changed in i if gi,j(d, ei) 
= dj, otherwise it is unchanged in i. It is directly
used in i if dj ∈ pars(ai(d, ei)) ∪ pars(ci(d, ei)), and used in i if it is directly
used in i or dj ∈ pars(gi,k(d, ei)) for some k such that dk is changed in i.

We will often need to deduce the value s that a parameter dj must have for
a summand i to be taken; the source of dj for i. More precisely, this value is
defined such that the enabling function of i can only evaluate to true if dj = s.

Definition 2 (Source). A function f : I × (dj:J) → Dj ∪ {⊥} is a source
function if, for every i ∈ I, dj ∈ J , and s ∈ Dj, f(i, dj) = s implies that

∀v ∈ D, ei ∈ Ei · ci(v, ei) =⇒ vj = s.

Furthermore, f(i, dj) = ⊥ is always allowed; it indicates that no unique value s
complying to the above could be found.

In the following we assume the existence of a source function source.

Note that source(i, dj) is allowed to be ⊥ even though there might be some
source s. The reason for this is that computing the source is in general unde-
cidable, so in practice heuristics are used that sometimes yield ⊥ when in fact
a source is present. However, we will see that this does not result in any errors.
The same holds for the destination functions defined below.

Basically, the heuristics we apply to find a source can handle equations, dis-
junctions and conjunctions. For an equational condition x = c the source is
obviously c, for a disjunction of such terms we apply set union, and for conjunc-
tion intersection. If for some summand i a set of sources is obtained, it can be
split into multiple summands, such that each again has a unique source.

Example 2. Let ci(d, ei) be given by (dj = 3∨ dj = 5)∧ dj = 3∧ dk = 10, then
obviously source(i, dj) = 3 is valid (because ({ 3 } ∪ { 5 }) ∩ { 3 } = { 3 }), but
also (as always) source(i, dj) = ⊥.

We define the destination of a parameter dj for a summand i to be the unique
value dj has after taking summand i. Again, we only specify a minimal
requirement.

Definition 3 (Destination). A function f : I × (dj :J) → Dj ∪ {⊥} is a des-
tination function if, for every i ∈ I, dj ∈ J , and s ∈ Dj, f(i, dj) = s implies

∀v ∈ D, ei ∈ Ei · ci(v, ei) =⇒ gi,j(v, ei) = s.

Furthermore, f(i, dj) = ⊥ is always allowed, indicating that no unique destina-
tion value could be derived.

In the following we assume the existence of a destination function dest.
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Our heuristics for computing dest(i, dj) just substitute source(i, dj) for dj in the
next-state function of summand i, and try to rewrite it to a closed term.

Example 3. Let ci(d, ei) be given by dj = 8 and gi,j(d, ei) by dj + 5, then
dest(i, dj) = 13 is valid, but also (as always) dest(i, dj) = ⊥. If for instance
ci(d, ei) = dj = 5 and gi,j(d, ei) = e3, then dest(i, dj) can only yield ⊥, since
the value of dj after taking i is not fixed.

We say that a parameter rules a summand if both its source and its destination
for that summand can be computed.

Definition 4 (Rules). A parameter dj rules a summand i if source(i, dj) 
= ⊥
and dest(i, dj) 
= ⊥.

The set of all summands that dj rules is denoted by Rdj = { i ∈ I | dj rules i }.
Furthermore, Vdj denotes the set of all possible values that dj can take before and
after taking one of the summands which it rules, plus its initial value. Formally,

Vdj = { source(i, dj) | i ∈ Rdj } ∪ { dest(i, dj) | i ∈ Rdj } ∪ { initj }.
Examples will show that summands can be ruled by several parameters.

We now define a parameter to be a control flow parameter if it rules all sum-
mands in which it is changed. Stated differently, in every summand a control flow
parameter is either left alone or we know what happens to it. Such a parameter
can be seen as a program counter for the summands it rules, and therefore its
values can be seen as locations. All other parameters are called data parameters.

Definition 5 (Control flow parameters). A parameter dj is a control flow
parameter (CFP) if for all i ∈ I, either dj rules i, or dj is unchanged in i. A
parameter that is not a CFP is called a data parameter (DP).

The set of all summands i ∈ I such that dj rules i is called the cluster of dj.
The set of all CFPs is denoted by C, the set of all DPs by D.

Example 4. Consider the LPE of Example 1 again. For the first summand we may
define source(1, a) = 1 and dest(1, a) = 2. Therefore, parameter a rules the first
summand. Similarly, it rules the third summand. As a is unchanged in the second
summand, it is a CFP (with summands 1 and 3 in its cluster). In the same way,
we can show that parameter b is a CFP ruling summands 2 and 3. Parameter x is
a DP, as it is changed in summand 1 while both its source and its destination are
not unique. From summand 3 it follows that y is a DP.

Based on CFPs, we can define control flow graphs. The nodes of the control flow
graph of a CFP dj are the values dj can take, and the edges denote possible tran-
sitions. Specifically, an edge labelled i from value s to t denotes that summand
i might be taken if dj = s, resulting in dj = t.

Definition 6 (Control flow graphs). Let dj be a CFP, then the control flow
graph for dj is the tuple (Vdj , Edj ), where Vdj was given in Definition 4, and

Edj = { (s, i, t) | i ∈ Rdj ∧ s = source(i, dj)∧ t = dest(i, dj) }.
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a = 1

a = 2

(1) (3)

(a) Control flow graph for a.

b = 1

b = 2

(3) (2)

(b) Control flow graph for b.

Fig. 1. Control flow graphs for the LPE of Example 1

Figure 1 shows the control flow graphs for the LPE of Example 1.
The next proposition states that if a CFP dj rules a summand i, and i is

enabled for some state vector v = (v1, . . . , vj , . . . , vn) and local variable vector
ei, then the control flow graph of dj contains an edge from vj to gi,j(v, ei).

Proposition 1. Let dj be a CFP, v a state vector, and ei a local variable vector.
Then, if dj rules i and ci(v, ei) holds, it follows that (vj , i, gi,j(v, ei)) ∈ Edj .

Note that we reconstruct a local control flow graph per CFP, rather than a global
control flow graph. Although global control flow might be useful, its graph can
grow larger than the complete state space, completely defeating its purpose.

4 Simultaneous Data Flow Analysis

Using the notion of CFPs, we analyse to which clusters DPs belong.

Definition 7 (The belongs-to relation). Let dk be a DP and dj a CFP, then
dk belongs to dj if all summands i ∈ I that use or change dk are ruled by dj.
We assume that each DP belongs to at least one CFP, and define CFPs to not
belong to anything.

Note that the assumption above can always be satisfied by adding a dummy
parameter b of type Bool to every summand, initialising it to true, adding
b = true to every ci, and leaving b unchanged in all gi.

Also note that the fact that a DP dk belongs to a CFP dj implies that the
complete data flow of dk is contained in the summands of the cluster of dj .
Therefore, all decisions on resetting dk can be made based on the summands
within this cluster.

Example 5. For the LPE of the previous example, x belongs to a, and y to b.

If a DP dk belongs to a CFP dj , it follows that all analyses on dk can be made
by the cluster of dj . We begin these analyses by defining for which values of dj

(so during which part of the cluster’s control flow) the value of dk is relevant.
Basically, dk is relevant if it might be directly used before it will be changed,

otherwise it is irrelevant. More precisely, the relevance of dk is divided into
three conditions. They state that dk is relevant given that dj = s, if there is a
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summand i that can be taken when dj = s, such that either (1) dk is directly
used in i; or (2,3) dk is indirectly used in i to determine the value of a DP that
is relevant after taking i. Basically, clause (2) deals with temporal dependencies
within one cluster, whereas (3) deals with dependencies through concurrency
between different clusters. The next definition formalises this.

Definition 8 (Relevance). Let dk ∈ D and dj ∈ C, such that dk belongs to dj.
Given some s ∈ Dj, we use (dk, dj , s) ∈ R (or R(dk, dj , s)) to denote that the
value of dk is relevant when dj = s. Formally, R is the smallest relation such
that

1. If dk is directly used in some i ∈ I, dk belongs to some dj ∈ C, and s =
source(i, dj), then R(dk, dj , s);

2. If R(dl, dj , t), and there exists an i ∈ I such that (s, i, t) ∈ Edj , and dk

belongs to dj, and dk ∈ pars(gi,l(d, ei)), then R(dk, dj , s);
3. If R(dl, dp, t), and there exists an i ∈ I and an r such that (r, i, t) ∈ Edp ,

and dk ∈ pars(gi,l(d, ei)), and dk belongs to some cluster dj to which dl does
not belong, and s = source(i, dj), then R(dk, dj , s).

If (dk, dj , s) 
∈ R, we write ¬R(dk, dj , s) and say that dk is irrelevant when
dj = s.

Although it might seem that the second and third clause could be merged, we
provide an example in [20] where this would decrease the number of reductions.

Example 6. Applying the first clause of the definition of relevance to the LPE of
Example 1, we see that R(x, a, 2) and R(y, b, 2). Then, no clauses apply anymore,
so ¬R(x, a, 1) and ¬R(y, b, 1). Now, we hide the action c, obtaining

X(a : { 1, 2 }, b: { 1, 2 }, x : D, y : D) =
∑

d : D a = 1 ⇒ read(d) · X(2, b, d, y) (1)
+ b = 2 ⇒ write(y) · X(a, 1, x, y) (2)
+ a = 2∧ b = 1 ⇒ τ · X(1, 2, x, x) (3)

In this case, the first clause of relevance only yields R(y, b, 2). Moreover, since x
is used in summand 3 to determine the value that y will have when b becomes 2,
also R(x, a, 2). Formally, this can be found using the third clause, substituting
l = y, p = b, t = 2, i = 3, r = 1, k = x, j = a, and s = 2.

Since clusters have only limited information, they do not always detect a DP’s ir-
relevance. However, they always have sufficient information to never erroneously
find a DP irrelevant. Therefore, we define a DP dk to be relevant given a state
vector v, if it is relevant for the valuations of all CFPs dj it belongs to.

Definition 9 (Relevance in state vectors). The relevance of a parameter dk

given a state vector v, denoted Relevant(dk, v), is defined by

Relevant(dk, v) =
∧

dj∈C
dk belongs to dj

R(dk, dj , vj).

Note that, since a CFP belongs to no other parameters, it is always relevant.
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Example 7. For the LPE of the previous example we derived that x belongs
to a, and that it is irrelevant when a = 1. Therefore, the valuation x = d5 is not
relevant in the state vector v = (1, 2, d5, d2), so we write ¬Relevant(x, v).

Obviously, the value of a DP that is irrelevant in a state vector does not matter.
For instance, v = (w, x, y) and v′ = (w, x′, y) are equivalent if ¬Relevant(d2, v).
To formalise this, we introduce a relation ∼= on state vectors, given by

v
∼= v′ ⇐⇒ ∀dk ∈ J : (Relevant(dk, v) =⇒ vk = v′k) ,

and prove that it is a strong bisimulation; one of the main results of this paper.

Theorem 1. The relation ∼= is a strong bisimulation.

Proof (sketch). It is easy to see that ∼= is an equivalence relation (1). Then, it
can be proven that if a summand i is enabled given a state vector v, it is also
enabled given a state vector v′ such that v

∼= v′ (2). Finally, it can be shown
that if a summand i is taken given v, its action is identical to when i is taken
given v′ (3), and their next-state vectors are equivalent according to ∼= (4).

Now, let v0 and v′
0 be state vectors such that v0

∼= v′
0. Also, assume that

v0
a→ v1. By (1) ∼= is symmetric, so we only need to prove that a transition

v′
0

a→ v′
1 exists such that v1

∼= v′
1.

By the operational semantics there is a summand i and a local variable vec-
tor ei such that ci(v0, ei) holds, a = ai(v0, ei), and v1 = gi(v0, ei). Now, by
(2) we know that ci(v′

0, ei) holds, and by (3) that a = ai(v′
0, ei). Therefore,

v′
0

a→gi(v′
0, ei). Using (4) we get gi(v0, ei)

∼= gi(v′
0, e), proving the theorem. ��

5 Transformations on LPEs

The most important application of the data flow analysis described in the pre-
vious section is to reduce the number of reachable states of the LTS underlying
an LPE. Note that by modifying irrelevant parameters in an arbitrary way, this
number could even increase. We present a syntactic transformation of LPEs,
and prove that it yields a strongly bisimilar system and can never increase the
number of reachable states. In several practical examples, it yields a decrease.

Our transformation uses the idea that a data parameter dk that is irrelevant
in all possible states after taking a summand i, can just as well be reset by i to
its initial value.

Definition 10 (Transforms). Given an LPE X of the familiar form, we define
its transform to be the LPE X ′ given by

X ′(d : D) =
∑

i∈I

∑

ei : Ei

ci(d, ei) ⇒ ai(d, ei) · X ′(g′i(d, ei)),

with

g′i,k(d, ei) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

gi,k(d, ei) if
∧

dj∈C
dj rules i

dk belongs to dj

R(dk, dj , dest(i, dj)),

initk otherwise.
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We will use the notation X(v) to denote state v in the underlying LTS of X,
and X ′(v) to denote state v in the underlying LTS of X ′.

Note that g′i(d, ei) only deviates from gi(d, ei) for parameters dk that are irrel-
evant after taking i, as stated by the following lemma.

Lemma 1. For every i ∈ I, state vector v, and local variable vector ei, given
that ci(v, ei) = true it holds that gi(v, ei)

∼= g′i(v, ei).

Using this lemma we show that X(v) and X ′(v) are bisimilar, by first proving
an even stronger statement.

Theorem 2. Let ≈= be defined by

X(v) ≈= X ′(v′) ⇐⇒ v
∼= v′,

then ≈= is a strong bisimulation. The relation ∼= is used as it was defined for X.

Proof. Let v0 and v′
0 be state vectors such that X(v0) ≈= X ′(v′

0), so v0
∼= v′

0.
Assume that X(v0) a→ X(v1). We need to prove that there exists a transition

X ′(v′
0) a→ X ′(v′

1) such that X(v1) ≈= X ′(v′
1). By Theorem 1 there exists a state

vector v′′
1 such that X(v′

0) a→ X(v′′
1 ) and v1

∼= v′′
1 . By the operational semantics,

for some i and ei we thus have ci(v′
0, ei), ai(v′

0, ei) = a, and gi(v′
0, ei) = v′′

1 . By
Definition 10, we have X ′(v′

0) a→ X ′(g′i(v
′
0, ei)), and by Lemma 1 gi(v′

0, ei)
∼=

g′i(v
′
0, ei). Now, by transitivity and reflexivity of ∼= (Statement (1) of the proof

of Theorem 1), v1
∼= v′′

1 = gi(v′
0, ei)

∼= g′i(v
′
0, ei), hence X(v1) ≈= X ′(g′i(v

′
0, ei)).

By symmetry of ∼=, this completes the proof. ��
The following corollary, stating the desired bisimilarity, immediately follows.

Corollary 1. Let X be an LPE, X ′ its transform, and v a state vector. Then,
X(v) is strongly bisimilar to X ′(v).

We now show that our choice of g′(d, ei) ensures that the state space of X ′ is
at most as large as the state space of X . We first give the invariant that if a
parameter is irrelevant for a state vector, it is equal to its initial value.

Proposition 2. For X ′(init) invariably ¬Relevant(dk, v) implies vk = initk.

Using this invariant it is possible to prove the following lemma, providing a
functional strong bisimulation relating the states of X(init) and X ′(init).

Lemma 2. Let h be a function over state vectors, such that for any v ∈ D it is
given by hk(v) = vk if Relevant(dk, v), and by hk(v) = initk otherwise. Then,
h is a strong bisimulation relating the states of X(init) and X ′(init).

Since the bisimulation relation is a function, and the domain of every function
is at least as large as its image, the following corollary is immediate.
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Corollary 2. The number of reachable states in X ′ is at most as large as the
number of reachable states in X.

Example 8. Using the above transformation, the LPE of Example 6 becomes

X ′(a : { 1, 2 }, b : { 1, 2 }, x : D, y : D) =
∑

d : D a = 1 ⇒ read(d) · X ′(2, b, d, y) (1)
+ b = 2 ⇒ write(y) · X ′(a, 1, x, d1) (2)
+ a = 2∧ b = 1 ⇒ τ · X ′(1, 2, d1, x) (3)

assuming that the initial state vector is (1, 1, d1, d1). Note that for X ′ the state
(1, 1, di, dj) is only reachable for di = dj = d1, whereas in the original specifica-
tion X it is reachable for all di, dj ∈ D such that di = dj .

6 Case Studies

The proposed method has been implemented in the context of the μCRL toolkit
by a tool called stategraph. For evaluation purposes we applied it first on a
model of a handshake register, modelled and verified by Hesselink [15]. We used
a MacBook with a 2.4 GHz Intel Core 2 Duo processor and 2 GB memory.

A handshake register is a data structure that is used for communication be-
tween a single reader and a single writer. It guarantees recentness and sequen-
tiality; any value that is read was at some point during the read action the last
value written, and the values of sequential reads occur in the same order as they
were written). Also, it is waitfree; both the reader and the writer can complete
their actions in a bounded number of steps, independent of the other process.
Hesselink provides a method to construct a handshake register of a certain data
type based on four so-called safe registers and four atomic boolean registers.

We used a μCRL model of the handshake register, and one of the imple-
mentation using four safe registers. We generated their state spaces, minimised,
and indeed obtained identical LTSs, showing that the implementation is correct.
However, using a data type D of three values the state space before minimisation
is already very large, such that its generation is quite time-consuming. So, we
applied stategraph (in combination with the existing μCRL tool constelm [11])
to reduce the LPE for different sizes of D. For comparison we also reduced the
specifications in the same way using the existing, less powerful tool parelm.

For each specification we measured the time for reducing its LPE and gener-
ating the state space. We also used a recently implemented tool1 for symbolic
reachability analysis [6] to obtain the state spaces when not using stategraph,
since in that case not all specifications could be generated explicitly. Every exper-
iment was performed ten times, and the average run times are shown in Table 1
(where x:y.z means x minutes and y.z seconds).

1 Available from http://fmt.cs.utwente.nl/tools/ltsmin

http://fmt.cs.utwente.nl/tools/ltsmin
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Table 1. Modelling a handshake register; parelm versus stategraph

constelm | parelm | constelm constelm | stategraph | constelm

states time (expl.) time (symb.) states time (expl.) time (symb.)

|D| = 2 540,736 0:23.0 0:04.5 45,504 0:02.4 0:01.3
|D| = 3 13,834,800 10:10.3 0:06.7 290,736 0:12.7 0:01.4
|D| = 4 142,081,536 – 0:09.0 1,107,456 0:48.9 0:01.6
|D| = 5 883,738,000 – 0:11.9 3,162,000 2:20.3 0:01.8
|D| = 6 3,991,840,704 – 0:15.4 7,504,704 5:26.1 0:01.9

Observations. The results show that stategraph provides a substantial reduc-
tion of the state space. Using parelm explicit generation was infeasible with just
four data elements (after sixteen hours about half of the states had been gen-
erated), whereas using stategraph we could easily continue until six elements.
Note that the state space reduction for |D| = 6 was more than a factor 500.
Also observe that stategraph is impressively useful for speeding up symbolic
analysis, as the time for symbolic generation improves an order of magnitude.

To gain an understanding of why our method works for this example, observe
the μCRL specification of the four safe registers below.

Y (i : Bool, j : Bool, r : { 1, 2 , 3 }, w : { 1, 2, 3 }, v : D, vw : D, vr : D) =
r = 1 ⇒ beginRead(i, j) · Y (i, j, 2, w, v, vw, vr) (1)

+ r = 2∧w = 1 ⇒ τ · Y (i, j, 3, w, v, vw, v) (2)
+

∑
x : D r = 2∧w 
= 1 ⇒ τ · Y (i, j, 3, w, v, vw, x) (3)

+ r = 3 ⇒ endRead(i, j, vr) · Y (i, j, 1, w, v, vw, vr) (4)
+

∑
x : D w = 1 ⇒ beginWrite(i, j, x) · Y (i, j, r, 2, v, x, vr) (5)

+ w = 2 ⇒ τ · Y (i, j, r, 3, vw, vw, vr) (6)
+ w = 3 ⇒ endWrite(i, j) · Y (i, j, r, 1, vw, vw, vr) (7)

The boolean parameters i and j are just meant to distinguish the four compo-
nents. The parameter r denotes the read status, and w the write status.

Reading consists of a beginRead action, a τ step, and an endRead action.
During the τ step either the contents of v is copied into vr, or, when writing is
taking place at the same time, a random value is copied to vr. Writing works by
first storing the value to be written in vw, and then copying vw to v.

The tool discovered that after summand 4 the value of vr is irrelevant, since it
will not be used before summand 4 is reached again. This is always preceded by
summand 2 or 3, both overwriting vr. Thus, vr can be reset to its initial value
in the next-state function of summand 4. This turned out to drastically decrease
the size of the state space. Other tools were not able to make this reduction,
since it requires control flow reconstruction. Note that using parallel processes
for the reader and the writer instead of our solution of encoding control flow in
the data parameters would be difficult, because of the shared variable v.
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Table 2. Modelling several specifications; parelm versus stategraph

constelm | parelm | constelm constelm | stategraph | constelm

specification time states summands pars time states summands pars

bke 0:47.9 79,949 50 31 0:48.3 79,949 50 21
ccp33 – – 1082 97 – – 807 94
onebit 0:25.1 319,732 30 26 0:21.4 269,428 30 26

AIDA-B 7:50.1 3,500,040 89 35 7:11.9 3,271,580 89 32
AIDA 0:40.1 318,682 85 35 0:30.8 253,622 85 32
ccp221 0:28.3 76,227 562 63 0:25.6 76,227 464 62
locker 1:43.3 803,830 88 72 1:32.9 803,830 88 19
swp32 0:11.7 156,900 13 12 0:11.8 156,900 13 12

Although the example may seem artificial, it is an almost one-to-one formalisa-
tion of its description in [15]. Without our method for control flow reconstruction,
finding the useful variable reset could not be done automatically.

Other specifications. We also applied stategraph to all the example specifica-
tions of μCRL, and five from industry: two versions of an Automatic In-flight
Data Acquisition unit for a helicopter of the Dutch Royal Navy [9]; a cache coher-
ence protocol for a distributed JVM [18]; an automatic translation from Erlang
to μCRL of a distributed resource locker in Ericsson’s AXD 301 switch [2]; and
the sliding window protocol (with three data elements and window size two) [3].
The same analysis as before was performed, but now also counting the number
of summands and parameters of the reduced LPEs. Decreases of these quantities
are due to stategraph resetting variables to their initial value, which may turn
them into constants and have them removed. As a side effect, some summands
might be removed as their enabling condition is shown to never be satisfied.
These effects provide a syntactical cleanup and fasten state space generation, as
seen for instance from the ccp221 and locker specifications.

The reductions obtained are shown in Table 2; values that differ significantly
are listed in boldface. Not all example specifications benefited from stategraph
(these are omitted from the table). This is partly because parelm already performs
a rudimentary variant of our method, and also because the lineariser removes pa-
rameters that are syntactically out of scope. However, although optimising LPEs
has been the focus for years, stategraph could still reduce some of the standard
examples. Especially for the larger, industrial specifications reductions in state
space, but also in the number of summands and parameters of the linearised form
were obtained. Both results are shown to speed up state space generation, proving
stategraph to be a valuable addition to the μCRL toolkit.

7 Conclusions and Future Work

We presented a novel method for reconstructing the control flow of linear pro-
cesses. This information is used for data flow analysis, aiming at state space
reduction by resetting variables that are irrelevant given a certain state. We
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introduced a transformation and proved both its preservation of strong bisim-
ilarity, and its property to never increase the state space. The reconstruction
process enables us to interpret some variables as program counters; something
other tools are not able to. Case studies using our implementation stategraph
showed that although for some small academic examples the existing tools al-
ready suffice, impressive state space reductions can be obtained for larger, indus-
trial systems. Since we work on linear processes, these reductions are obtained
before the entire state space is generated, saving valuable time. Surprisingly, a re-
cently implemented symbolic tool for μCRL also profits much from stategraph.

As future work it would be interesting to find additional applications for the
reconstructed control flow. One possibility is to use it for invariant generation,
another (already implemented) is to visualise it such that process structure can
be understood better. Also, it might be used to optimise confluence checking [5],
since it could assist in determining which pairs of summands may be confluent.

Another direction for future work is based on the insight that the control flow
graph is an abstraction of the state space. It could be investigated whether other
abstractions, such as a control flow graph containing also the values of important
data parameters, might result in more accurate data flow analysis.

Acknowledgements. We thank Jan Friso Groote for his specification of the hand-
shake register, upon which our model has been based. Furthermore, we thank
Michael Weber for fruitful discussions about Hesselink’s protocol.
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